1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
use crate::*;
use arrayref::array_ref;
use core::cmp;

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub const MAX_DEGREE: usize = 4;

#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
pub const MAX_DEGREE: usize = 1;

// Variants other than Portable are unreachable in no_std, unless CPU features
// are explicitly enabled for the build with e.g. RUSTFLAGS="-C target-feature=avx2".
// This might change in the future if is_x86_feature_detected moves into libcore.
#[allow(dead_code)]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum Platform {
    Portable,
    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    SSE41,
    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    AVX2,
}

#[derive(Clone, Copy, Debug)]
pub struct Implementation(Platform);

impl Implementation {
    pub fn detect() -> Self {
        // Try the different implementations in order of how fast/modern they
        // are. Currently on non-x86, everything just uses portable.
        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
        {
            if let Some(avx2_impl) = Self::avx2_if_supported() {
                return avx2_impl;
            }
        }
        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
        {
            if let Some(sse41_impl) = Self::sse41_if_supported() {
                return sse41_impl;
            }
        }
        Self::portable()
    }

    pub fn portable() -> Self {
        Implementation(Platform::Portable)
    }

    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    #[allow(unreachable_code)]
    pub fn sse41_if_supported() -> Option<Self> {
        // Check whether SSE4.1 support is assumed by the build.
        #[cfg(target_feature = "sse4.1")]
        {
            return Some(Implementation(Platform::SSE41));
        }
        // Otherwise dynamically check for support if we can.
        #[cfg(feature = "std")]
        {
            if is_x86_feature_detected!("sse4.1") {
                return Some(Implementation(Platform::SSE41));
            }
        }
        None
    }

    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    #[allow(unreachable_code)]
    pub fn avx2_if_supported() -> Option<Self> {
        // Check whether AVX2 support is assumed by the build.
        #[cfg(target_feature = "avx2")]
        {
            return Some(Implementation(Platform::AVX2));
        }
        // Otherwise dynamically check for support if we can.
        #[cfg(feature = "std")]
        {
            if is_x86_feature_detected!("avx2") {
                return Some(Implementation(Platform::AVX2));
            }
        }
        None
    }

    pub fn degree(&self) -> usize {
        match self.0 {
            #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
            Platform::AVX2 => avx2::DEGREE,
            #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
            Platform::SSE41 => sse41::DEGREE,
            Platform::Portable => 1,
        }
    }

    pub fn compress1_loop(
        &self,
        input: &[u8],
        words: &mut [Word; 8],
        count: Count,
        last_node: LastNode,
        finalize: Finalize,
        stride: Stride,
    ) {
        match self.0 {
            #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
            Platform::AVX2 => unsafe {
                avx2::compress1_loop(input, words, count, last_node, finalize, stride);
            },
            // Note that there's an SSE version of compress1 in the official C
            // implementation, but I haven't ported it yet.
            _ => {
                portable::compress1_loop(input, words, count, last_node, finalize, stride);
            }
        }
    }

    pub fn compress2_loop(&self, jobs: &mut [Job; 2], finalize: Finalize, stride: Stride) {
        match self.0 {
            #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
            Platform::AVX2 | Platform::SSE41 => unsafe {
                sse41::compress2_loop(jobs, finalize, stride)
            },
            _ => panic!("unsupported"),
        }
    }

    pub fn compress4_loop(&self, jobs: &mut [Job; 4], finalize: Finalize, stride: Stride) {
        match self.0 {
            #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
            Platform::AVX2 => unsafe { avx2::compress4_loop(jobs, finalize, stride) },
            _ => panic!("unsupported"),
        }
    }
}

pub struct Job<'a, 'b> {
    pub input: &'a [u8],
    pub words: &'b mut [Word; 8],
    pub count: Count,
    pub last_node: LastNode,
}

impl<'a, 'b> core::fmt::Debug for Job<'a, 'b> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // NB: Don't print the words. Leaking them would allow length extension.
        write!(
            f,
            "Job {{ input_len: {}, count: {}, last_node: {} }}",
            self.input.len(),
            self.count,
            self.last_node.yes(),
        )
    }
}

// Finalize could just be a bool, but this is easier to read at callsites.
#[derive(Clone, Copy, Debug)]
pub enum Finalize {
    Yes,
    No,
}

impl Finalize {
    pub fn yes(&self) -> bool {
        match self {
            Finalize::Yes => true,
            Finalize::No => false,
        }
    }
}

// Like Finalize, this is easier to read at callsites.
#[derive(Clone, Copy, Debug)]
pub enum LastNode {
    Yes,
    No,
}

impl LastNode {
    pub fn yes(&self) -> bool {
        match self {
            LastNode::Yes => true,
            LastNode::No => false,
        }
    }
}

#[derive(Clone, Copy, Debug)]
pub enum Stride {
    Serial,   // BLAKE2b/BLAKE2s
    Parallel, // BLAKE2bp/BLAKE2sp
}

impl Stride {
    pub fn padded_blockbytes(&self) -> usize {
        match self {
            Stride::Serial => BLOCKBYTES,
            Stride::Parallel => blake2bp::DEGREE * BLOCKBYTES,
        }
    }
}

pub(crate) fn count_low(count: Count) -> Word {
    count as Word
}

pub(crate) fn count_high(count: Count) -> Word {
    (count >> 8 * size_of::<Word>()) as Word
}

pub(crate) fn assemble_count(low: Word, high: Word) -> Count {
    low as Count + ((high as Count) << 8 * size_of::<Word>())
}

pub(crate) fn flag_word(flag: bool) -> Word {
    if flag {
        !0
    } else {
        0
    }
}

// Pull a array reference at the given offset straight from the input, if
// there's a full block of input available. If there's only a partial block,
// copy it into the provided buffer, and return an array reference that. Along
// with the array, return the number of bytes of real input, and whether the
// input can be finalized (i.e. whether there aren't any more bytes after this
// block). Note that this is written so that the optimizer can elide bounds
// checks, see: https://godbolt.org/z/0hH2bC
pub fn final_block<'a>(
    input: &'a [u8],
    offset: usize,
    buffer: &'a mut [u8; BLOCKBYTES],
    stride: Stride,
) -> (&'a [u8; BLOCKBYTES], usize, bool) {
    let capped_offset = cmp::min(offset, input.len());
    let offset_slice = &input[capped_offset..];
    if offset_slice.len() >= BLOCKBYTES {
        let block = array_ref!(offset_slice, 0, BLOCKBYTES);
        let should_finalize = offset_slice.len() <= stride.padded_blockbytes();
        (block, BLOCKBYTES, should_finalize)
    } else {
        // Copy the final block to the front of the block buffer. The rest of
        // the buffer is assumed to be initialized to zero.
        buffer[..offset_slice.len()].copy_from_slice(offset_slice);
        (buffer, offset_slice.len(), true)
    }
}

pub fn input_debug_asserts(input: &[u8], finalize: Finalize) {
    // If we're not finalizing, the input must not be empty, and it must be an
    // even multiple of the block size.
    if !finalize.yes() {
        debug_assert!(!input.is_empty());
        debug_assert_eq!(0, input.len() % BLOCKBYTES);
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use arrayvec::ArrayVec;
    use core::mem::size_of;

    #[test]
    fn test_detection() {
        assert_eq!(Platform::Portable, Implementation::portable().0);

        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
        #[cfg(feature = "std")]
        {
            if is_x86_feature_detected!("avx2") {
                assert_eq!(Platform::AVX2, Implementation::detect().0);
                assert_eq!(
                    Platform::AVX2,
                    Implementation::avx2_if_supported().unwrap().0
                );
                assert_eq!(
                    Platform::SSE41,
                    Implementation::sse41_if_supported().unwrap().0
                );
            } else if is_x86_feature_detected!("sse4.1") {
                assert_eq!(Platform::SSE41, Implementation::detect().0);
                assert!(Implementation::avx2_if_supported().is_none());
                assert_eq!(
                    Platform::SSE41,
                    Implementation::sse41_if_supported().unwrap().0
                );
            } else {
                assert_eq!(Platform::Portable, Implementation::detect().0);
                assert!(Implementation::avx2_if_supported().is_none());
                assert!(Implementation::sse41_if_supported().is_none());
            }
        }
    }

    // TODO: Move all of these case tests into the implementation files.
    fn exercise_cases<F>(mut f: F)
    where
        F: FnMut(Stride, usize, LastNode, Finalize, Count),
    {
        // Chose counts to hit the relevant overflow cases.
        let counts = &[
            (0 as Count),
            ((1 as Count) << (8 * size_of::<Word>())) - BLOCKBYTES as Count,
            (0 as Count).wrapping_sub(BLOCKBYTES as Count),
        ];
        for &stride in &[Stride::Serial, Stride::Parallel] {
            let lengths = [
                0,
                1,
                BLOCKBYTES - 1,
                BLOCKBYTES,
                BLOCKBYTES + 1,
                2 * BLOCKBYTES - 1,
                2 * BLOCKBYTES,
                2 * BLOCKBYTES + 1,
                stride.padded_blockbytes() - 1,
                stride.padded_blockbytes(),
                stride.padded_blockbytes() + 1,
                2 * stride.padded_blockbytes() - 1,
                2 * stride.padded_blockbytes(),
                2 * stride.padded_blockbytes() + 1,
            ];
            for &length in &lengths {
                for &last_node in &[LastNode::No, LastNode::Yes] {
                    for &finalize in &[Finalize::No, Finalize::Yes] {
                        if !finalize.yes() && (length == 0 || length % BLOCKBYTES != 0) {
                            // Skip these cases, they're invalid.
                            continue;
                        }
                        for &count in counts {
                            // eprintln!("\ncase -----");
                            // dbg!(stride);
                            // dbg!(length);
                            // dbg!(last_node);
                            // dbg!(finalize);
                            // dbg!(count);

                            f(stride, length, last_node, finalize, count);
                        }
                    }
                }
            }
        }
    }

    fn initial_test_words(input_index: usize) -> [Word; 8] {
        crate::Params::new()
            .node_offset(input_index as u64)
            .to_words()
    }

    // Use the portable implementation, one block at a time, to compute the
    // final state words expected for a given test case.
    fn reference_compression(
        input: &[u8],
        stride: Stride,
        last_node: LastNode,
        finalize: Finalize,
        mut count: Count,
        input_index: usize,
    ) -> [Word; 8] {
        let mut words = initial_test_words(input_index);
        let mut offset = 0;
        while offset == 0 || offset < input.len() {
            let block_size = cmp::min(BLOCKBYTES, input.len() - offset);
            let maybe_finalize = if offset + stride.padded_blockbytes() < input.len() {
                Finalize::No
            } else {
                finalize
            };
            portable::compress1_loop(
                &input[offset..][..block_size],
                &mut words,
                count,
                last_node,
                maybe_finalize,
                Stride::Serial,
            );
            offset += stride.padded_blockbytes();
            count = count.wrapping_add(BLOCKBYTES as Count);
        }
        words
    }

    // For various loop lengths and finalization parameters, make sure that the
    // implementation gives the same answer as the portable implementation does
    // when invoked one block at a time. (So even the portable implementation
    // itself is being tested here, to make sure its loop is correct.) Note
    // that this doesn't include any fixed test vectors; those are taken from
    // the blake2-kat.json file (copied from upstream) and tested elsewhere.
    fn exercise_compress1_loop(implementation: Implementation) {
        let mut input = [0; 100 * BLOCKBYTES];
        paint_test_input(&mut input);

        exercise_cases(|stride, length, last_node, finalize, count| {
            let reference_words =
                reference_compression(&input[..length], stride, last_node, finalize, count, 0);

            let mut test_words = initial_test_words(0);
            implementation.compress1_loop(
                &input[..length],
                &mut test_words,
                count,
                last_node,
                finalize,
                stride,
            );
            assert_eq!(reference_words, test_words);
        });
    }

    #[test]
    fn test_compress1_loop_portable() {
        exercise_compress1_loop(Implementation::portable());
    }

    #[test]
    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    fn test_compress1_loop_sse41() {
        // Currently this just falls back to portable, but we test it anyway.
        if let Some(imp) = Implementation::sse41_if_supported() {
            exercise_compress1_loop(imp);
        }
    }

    #[test]
    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    fn test_compress1_loop_avx2() {
        if let Some(imp) = Implementation::avx2_if_supported() {
            exercise_compress1_loop(imp);
        }
    }

    // I use ArrayVec everywhere in here becuase currently these tests pass
    // under no_std. I might decide that's not worth maintaining at some point,
    // since really all we care about with no_std is that the library builds,
    // but for now it's here. Everything is keyed off of this N constant so
    // that it's easy to copy the code to exercise_compress4_loop.
    fn exercise_compress2_loop(implementation: Implementation) {
        const N: usize = 2;

        let mut input_buffer = [0; 100 * BLOCKBYTES];
        paint_test_input(&mut input_buffer);
        let mut inputs = ArrayVec::<[_; N]>::new();
        for i in 0..N {
            inputs.push(&input_buffer[i..]);
        }

        exercise_cases(|stride, length, last_node, finalize, count| {
            let mut reference_words = ArrayVec::<[_; N]>::new();
            for i in 0..N {
                let words = reference_compression(
                    &inputs[i][..length],
                    stride,
                    last_node,
                    finalize,
                    count.wrapping_add((i * BLOCKBYTES) as Count),
                    i,
                );
                reference_words.push(words);
            }

            let mut test_words = ArrayVec::<[_; N]>::new();
            for i in 0..N {
                test_words.push(initial_test_words(i));
            }
            let mut jobs = ArrayVec::<[_; N]>::new();
            for (i, words) in test_words.iter_mut().enumerate() {
                jobs.push(Job {
                    input: &inputs[i][..length],
                    words,
                    count: count.wrapping_add((i * BLOCKBYTES) as Count),
                    last_node,
                });
            }
            let mut jobs = jobs.into_inner().expect("full");
            implementation.compress2_loop(&mut jobs, finalize, stride);

            for i in 0..N {
                assert_eq!(reference_words[i], test_words[i], "words {} unequal", i);
            }
        });
    }

    #[test]
    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    fn test_compress2_loop_sse41() {
        if let Some(imp) = Implementation::sse41_if_supported() {
            exercise_compress2_loop(imp);
        }
    }

    #[test]
    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    fn test_compress2_loop_avx2() {
        // Currently this just falls back to SSE4.1, but we test it anyway.
        if let Some(imp) = Implementation::avx2_if_supported() {
            exercise_compress2_loop(imp);
        }
    }

    // Copied from exercise_compress2_loop, with a different value of N and an
    // interior call to compress4_loop.
    fn exercise_compress4_loop(implementation: Implementation) {
        const N: usize = 4;

        let mut input_buffer = [0; 100 * BLOCKBYTES];
        paint_test_input(&mut input_buffer);
        let mut inputs = ArrayVec::<[_; N]>::new();
        for i in 0..N {
            inputs.push(&input_buffer[i..]);
        }

        exercise_cases(|stride, length, last_node, finalize, count| {
            let mut reference_words = ArrayVec::<[_; N]>::new();
            for i in 0..N {
                let words = reference_compression(
                    &inputs[i][..length],
                    stride,
                    last_node,
                    finalize,
                    count.wrapping_add((i * BLOCKBYTES) as Count),
                    i,
                );
                reference_words.push(words);
            }

            let mut test_words = ArrayVec::<[_; N]>::new();
            for i in 0..N {
                test_words.push(initial_test_words(i));
            }
            let mut jobs = ArrayVec::<[_; N]>::new();
            for (i, words) in test_words.iter_mut().enumerate() {
                jobs.push(Job {
                    input: &inputs[i][..length],
                    words,
                    count: count.wrapping_add((i * BLOCKBYTES) as Count),
                    last_node,
                });
            }
            let mut jobs = jobs.into_inner().expect("full");
            implementation.compress4_loop(&mut jobs, finalize, stride);

            for i in 0..N {
                assert_eq!(reference_words[i], test_words[i], "words {} unequal", i);
            }
        });
    }

    #[test]
    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    fn test_compress4_loop_avx2() {
        if let Some(imp) = Implementation::avx2_if_supported() {
            exercise_compress4_loop(imp);
        }
    }

    #[test]
    fn sanity_check_count_size() {
        assert_eq!(size_of::<Count>(), 2 * size_of::<Word>());
    }
}