Files
arrayref
arrayvec
bamboo_rs_core
blake2b_simd
block_buffer
byteorder
cfg_if
constant_time_eq
cpufeatures
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
curve25519_dalek
digest
doc_comment
ed25519
ed25519_dalek
either
generic_array
getrandom
hex
keccak
lazy_static
libc
lipmaa_link
memoffset
merlin
num_cpus
opaque_debug
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rayon
rayon_core
scopeguard
serde
serde_bytes
serde_derive
sha2
signature
snafu
snafu_derive
static_assertions
subtle
syn
synstructure
typenum
unicode_xid
varu64
yamf_hash
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
use arrayref::{array_ref, array_refs};

use super::*;
use crate::guts::{
    count_high, count_low, final_block, flag_word, input_debug_asserts, Finalize, LastNode, Stride,
};

// G is the mixing function, called eight times per round in the compression
// function. V is the 16-word state vector of the compression function, usually
// described as a 4x4 matrix. A, B, C, and D are the mixing indices, set by the
// caller first to the four columns of V, and then to its four diagonals. X and
// Y are words of input, chosen by the caller according to the message
// schedule, SIGMA.
#[inline(always)]
fn g(v: &mut [Word; 16], a: usize, b: usize, c: usize, d: usize, x: Word, y: Word) {
    v[a] = v[a].wrapping_add(v[b]).wrapping_add(x);
    v[d] = (v[d] ^ v[a]).rotate_right(32);
    v[c] = v[c].wrapping_add(v[d]);
    v[b] = (v[b] ^ v[c]).rotate_right(24);
    v[a] = v[a].wrapping_add(v[b]).wrapping_add(y);
    v[d] = (v[d] ^ v[a]).rotate_right(16);
    v[c] = v[c].wrapping_add(v[d]);
    v[b] = (v[b] ^ v[c]).rotate_right(63);
}

// This is too much inlining for some small chips like ARM Cortex-M0, so the
// uninline_portable feature is provided to disable it.
#[cfg_attr(not(feature = "uninline_portable"), inline(always))]
fn round(r: usize, m: &[Word; 16], v: &mut [Word; 16]) {
    // Select the message schedule based on the round.
    let s = SIGMA[r];

    // Mix the columns.
    g(v, 0, 4, 8, 12, m[s[0] as usize], m[s[1] as usize]);
    g(v, 1, 5, 9, 13, m[s[2] as usize], m[s[3] as usize]);
    g(v, 2, 6, 10, 14, m[s[4] as usize], m[s[5] as usize]);
    g(v, 3, 7, 11, 15, m[s[6] as usize], m[s[7] as usize]);

    // Mix the rows.
    g(v, 0, 5, 10, 15, m[s[8] as usize], m[s[9] as usize]);
    g(v, 1, 6, 11, 12, m[s[10] as usize], m[s[11] as usize]);
    g(v, 2, 7, 8, 13, m[s[12] as usize], m[s[13] as usize]);
    g(v, 3, 4, 9, 14, m[s[14] as usize], m[s[15] as usize]);
}

#[inline(always)]
fn compress_block(
    block: &[u8; BLOCKBYTES],
    words: &mut [Word; 8],
    count: Count,
    last_block: Word,
    last_node: Word,
) {
    // Initialize the compression state.
    let mut v = [
        words[0],
        words[1],
        words[2],
        words[3],
        words[4],
        words[5],
        words[6],
        words[7],
        IV[0],
        IV[1],
        IV[2],
        IV[3],
        IV[4] ^ count_low(count),
        IV[5] ^ count_high(count),
        IV[6] ^ last_block,
        IV[7] ^ last_node,
    ];

    // Parse the message bytes as ints in little endian order.
    const W: usize = size_of::<Word>();
    let msg_refs = array_refs!(block, W, W, W, W, W, W, W, W, W, W, W, W, W, W, W, W);
    let m = [
        Word::from_le_bytes(*msg_refs.0),
        Word::from_le_bytes(*msg_refs.1),
        Word::from_le_bytes(*msg_refs.2),
        Word::from_le_bytes(*msg_refs.3),
        Word::from_le_bytes(*msg_refs.4),
        Word::from_le_bytes(*msg_refs.5),
        Word::from_le_bytes(*msg_refs.6),
        Word::from_le_bytes(*msg_refs.7),
        Word::from_le_bytes(*msg_refs.8),
        Word::from_le_bytes(*msg_refs.9),
        Word::from_le_bytes(*msg_refs.10),
        Word::from_le_bytes(*msg_refs.11),
        Word::from_le_bytes(*msg_refs.12),
        Word::from_le_bytes(*msg_refs.13),
        Word::from_le_bytes(*msg_refs.14),
        Word::from_le_bytes(*msg_refs.15),
    ];

    round(0, &m, &mut v);
    round(1, &m, &mut v);
    round(2, &m, &mut v);
    round(3, &m, &mut v);
    round(4, &m, &mut v);
    round(5, &m, &mut v);
    round(6, &m, &mut v);
    round(7, &m, &mut v);
    round(8, &m, &mut v);
    round(9, &m, &mut v);
    round(10, &m, &mut v);
    round(11, &m, &mut v);

    words[0] ^= v[0] ^ v[8];
    words[1] ^= v[1] ^ v[9];
    words[2] ^= v[2] ^ v[10];
    words[3] ^= v[3] ^ v[11];
    words[4] ^= v[4] ^ v[12];
    words[5] ^= v[5] ^ v[13];
    words[6] ^= v[6] ^ v[14];
    words[7] ^= v[7] ^ v[15];
}

pub fn compress1_loop(
    input: &[u8],
    words: &mut [Word; 8],
    mut count: Count,
    last_node: LastNode,
    finalize: Finalize,
    stride: Stride,
) {
    input_debug_asserts(input, finalize);

    let mut local_words = *words;

    let mut fin_offset = input.len().saturating_sub(1);
    fin_offset -= fin_offset % stride.padded_blockbytes();
    let mut buf = [0; BLOCKBYTES];
    let (fin_block, fin_len, _) = final_block(input, fin_offset, &mut buf, stride);
    let fin_last_block = flag_word(finalize.yes());
    let fin_last_node = flag_word(finalize.yes() && last_node.yes());

    let mut offset = 0;
    loop {
        let block;
        let count_delta;
        let last_block;
        let last_node;
        if offset == fin_offset {
            block = fin_block;
            count_delta = fin_len;
            last_block = fin_last_block;
            last_node = fin_last_node;
        } else {
            block = array_ref!(input, offset, BLOCKBYTES);
            count_delta = BLOCKBYTES;
            last_block = flag_word(false);
            last_node = flag_word(false);
        };

        count = count.wrapping_add(count_delta as Count);
        compress_block(block, &mut local_words, count, last_block, last_node);

        // Check for termination before bumping the offset, to avoid overflow.
        if offset == fin_offset {
            break;
        }

        offset += stride.padded_blockbytes();
    }

    *words = local_words;
}