1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
use arrayref::{array_ref, array_refs};

use super::*;
use crate::guts::{
    count_high, count_low, final_block, flag_word, input_debug_asserts, Finalize, LastNode, Stride,
};

// G is the mixing function, called eight times per round in the compression
// function. V is the 16-word state vector of the compression function, usually
// described as a 4x4 matrix. A, B, C, and D are the mixing indices, set by the
// caller first to the four columns of V, and then to its four diagonals. X and
// Y are words of input, chosen by the caller according to the message
// schedule, SIGMA.
#[inline(always)]
fn g(v: &mut [Word; 16], a: usize, b: usize, c: usize, d: usize, x: Word, y: Word) {
    v[a] = v[a].wrapping_add(v[b]).wrapping_add(x);
    v[d] = (v[d] ^ v[a]).rotate_right(32);
    v[c] = v[c].wrapping_add(v[d]);
    v[b] = (v[b] ^ v[c]).rotate_right(24);
    v[a] = v[a].wrapping_add(v[b]).wrapping_add(y);
    v[d] = (v[d] ^ v[a]).rotate_right(16);
    v[c] = v[c].wrapping_add(v[d]);
    v[b] = (v[b] ^ v[c]).rotate_right(63);
}

// This is too much inlining for some small chips like ARM Cortex-M0, so the
// uninline_portable feature is provided to disable it.
#[cfg_attr(not(feature = "uninline_portable"), inline(always))]
fn round(r: usize, m: &[Word; 16], v: &mut [Word; 16]) {
    // Select the message schedule based on the round.
    let s = SIGMA[r];

    // Mix the columns.
    g(v, 0, 4, 8, 12, m[s[0] as usize], m[s[1] as usize]);
    g(v, 1, 5, 9, 13, m[s[2] as usize], m[s[3] as usize]);
    g(v, 2, 6, 10, 14, m[s[4] as usize], m[s[5] as usize]);
    g(v, 3, 7, 11, 15, m[s[6] as usize], m[s[7] as usize]);

    // Mix the rows.
    g(v, 0, 5, 10, 15, m[s[8] as usize], m[s[9] as usize]);
    g(v, 1, 6, 11, 12, m[s[10] as usize], m[s[11] as usize]);
    g(v, 2, 7, 8, 13, m[s[12] as usize], m[s[13] as usize]);
    g(v, 3, 4, 9, 14, m[s[14] as usize], m[s[15] as usize]);
}

#[inline(always)]
fn compress_block(
    block: &[u8; BLOCKBYTES],
    words: &mut [Word; 8],
    count: Count,
    last_block: Word,
    last_node: Word,
) {
    // Initialize the compression state.
    let mut v = [
        words[0],
        words[1],
        words[2],
        words[3],
        words[4],
        words[5],
        words[6],
        words[7],
        IV[0],
        IV[1],
        IV[2],
        IV[3],
        IV[4] ^ count_low(count),
        IV[5] ^ count_high(count),
        IV[6] ^ last_block,
        IV[7] ^ last_node,
    ];

    // Parse the message bytes as ints in little endian order.
    const W: usize = size_of::<Word>();
    let msg_refs = array_refs!(block, W, W, W, W, W, W, W, W, W, W, W, W, W, W, W, W);
    let m = [
        Word::from_le_bytes(*msg_refs.0),
        Word::from_le_bytes(*msg_refs.1),
        Word::from_le_bytes(*msg_refs.2),
        Word::from_le_bytes(*msg_refs.3),
        Word::from_le_bytes(*msg_refs.4),
        Word::from_le_bytes(*msg_refs.5),
        Word::from_le_bytes(*msg_refs.6),
        Word::from_le_bytes(*msg_refs.7),
        Word::from_le_bytes(*msg_refs.8),
        Word::from_le_bytes(*msg_refs.9),
        Word::from_le_bytes(*msg_refs.10),
        Word::from_le_bytes(*msg_refs.11),
        Word::from_le_bytes(*msg_refs.12),
        Word::from_le_bytes(*msg_refs.13),
        Word::from_le_bytes(*msg_refs.14),
        Word::from_le_bytes(*msg_refs.15),
    ];

    round(0, &m, &mut v);
    round(1, &m, &mut v);
    round(2, &m, &mut v);
    round(3, &m, &mut v);
    round(4, &m, &mut v);
    round(5, &m, &mut v);
    round(6, &m, &mut v);
    round(7, &m, &mut v);
    round(8, &m, &mut v);
    round(9, &m, &mut v);
    round(10, &m, &mut v);
    round(11, &m, &mut v);

    words[0] ^= v[0] ^ v[8];
    words[1] ^= v[1] ^ v[9];
    words[2] ^= v[2] ^ v[10];
    words[3] ^= v[3] ^ v[11];
    words[4] ^= v[4] ^ v[12];
    words[5] ^= v[5] ^ v[13];
    words[6] ^= v[6] ^ v[14];
    words[7] ^= v[7] ^ v[15];
}

pub fn compress1_loop(
    input: &[u8],
    words: &mut [Word; 8],
    mut count: Count,
    last_node: LastNode,
    finalize: Finalize,
    stride: Stride,
) {
    input_debug_asserts(input, finalize);

    let mut local_words = *words;

    let mut fin_offset = input.len().saturating_sub(1);
    fin_offset -= fin_offset % stride.padded_blockbytes();
    let mut buf = [0; BLOCKBYTES];
    let (fin_block, fin_len, _) = final_block(input, fin_offset, &mut buf, stride);
    let fin_last_block = flag_word(finalize.yes());
    let fin_last_node = flag_word(finalize.yes() && last_node.yes());

    let mut offset = 0;
    loop {
        let block;
        let count_delta;
        let last_block;
        let last_node;
        if offset == fin_offset {
            block = fin_block;
            count_delta = fin_len;
            last_block = fin_last_block;
            last_node = fin_last_node;
        } else {
            block = array_ref!(input, offset, BLOCKBYTES);
            count_delta = BLOCKBYTES;
            last_block = flag_word(false);
            last_node = flag_word(false);
        };

        count = count.wrapping_add(count_delta as Count);
        compress_block(block, &mut local_words, count, last_block, last_node);

        // Check for termination before bumping the offset, to avoid overflow.
        if offset == fin_offset {
            break;
        }

        offset += stride.padded_blockbytes();
    }

    *words = local_words;
}