1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Internal curve representations which are not part of the public API.
//!
//! # Curve representations
//!
//! Internally, we use several different models for the curve.  Here
//! is a sketch of the relationship between the models, following [a
//! post][smith-moderncrypto]
//! by Ben Smith on the `moderncrypto` mailing list.  This is also briefly
//! discussed in section 2.5 of [_Montgomery curves and their
//! arithmetic_][costello-smith-2017] by Costello and Smith.
//!
//! Begin with the affine equation for the curve,
//! $$
//!     -x\^2 + y\^2 = 1 + dx\^2y\^2.
//! $$
//! Next, pass to the projective closure \\(\mathbb P\^1 \times \mathbb
//! P\^1 \\) by setting \\(x=X/Z\\), \\(y=Y/T.\\)  Clearing denominators
//! gives the model
//! $$
//!     -X\^2T\^2 + Y\^2Z\^2 = Z\^2T\^2 + dX\^2Y\^2.
//! $$
//! In `curve25519-dalek`, this is represented as the `CompletedPoint`
//! struct.
//! To map from \\(\mathbb P\^1 \times \mathbb P\^1 \\), a product of
//! two lines, to \\(\mathbb P\^3\\), we use the [Segre
//! embedding](https://en.wikipedia.org/wiki/Segre_embedding)
//! $$
//!     \sigma : ((X:Z),(Y:T)) \mapsto (XY:XT:ZY:ZT).
//! $$
//! Using coordinates \\( (W_0:W_1:W_2:W_3) \\) for \\(\mathbb P\^3\\),
//! the image \\(\sigma (\mathbb P\^1 \times \mathbb P\^1) \\) is the
//! surface defined by \\( W_0 W_3 = W_1 W_2 \\), and under \\(
//! \sigma\\), the equation above becomes
//! $$
//!     -W\_1\^2 + W\_2\^2 = W\_3\^2 + dW\_0\^2,
//! $$
//! so that the curve is given by the pair of equations
//! $$
//! \begin{aligned}
//!     -W\_1\^2 + W\_2\^2 &= W\_3\^2 + dW\_0\^2, \\\\  W_0 W_3 &= W_1 W_2.
//! \end{aligned}
//! $$
//! Up to variable naming, this is exactly the "extended" curve model
//! introduced in [_Twisted Edwards Curves
//! Revisited_][hisil-wong-carter-dawson-2008] by Hisil, Wong, Carter,
//! and Dawson.  In `curve25519-dalek`, it is represented as the
//! `EdwardsPoint` struct.  We can map from \\(\mathbb P\^3 \\) to
//! \\(\mathbb P\^2 \\) by sending \\( (W\_0:W\_1:W\_2:W\_3) \\) to \\(
//! (W\_1:W\_2:W\_3) \\).  Notice that
//! $$
//!     \frac {W\_1} {W\_3} = \frac {XT} {ZT} = \frac X Z = x,
//! $$
//! and
//! $$
//!     \frac {W\_2} {W\_3} = \frac {YZ} {ZT} = \frac Y T = y,
//! $$
//! so this is the same as if we had started with the affine model
//! and passed to \\( \mathbb P\^2 \\) by setting \\( x = W\_1 / W\_3
//! \\), \\(y = W\_2 / W\_3 \\).
//! Up to variable naming, this is the projective representation
//! introduced in in [_Twisted Edwards
//! Curves_][bernstein-birkner-joye-lange-peters-2008] by Bernstein,
//! Birkner, Joye, Lange, and Peters.  In `curve25519-dalek`, it is
//! represented by the `ProjectivePoint` struct.
//!
//! # Passing between curve models
//!
//! Although the \\( \mathbb P\^3 \\) model provides faster addition
//! formulas, the \\( \mathbb P\^2 \\) model provides faster doubling
//! formulas.  Hisil, Wong, Carter, and Dawson therefore suggest mixing
//! coordinate systems for scalar multiplication, attributing the idea
//! to [a 1998 paper][cohen-miyaji-ono-1998] of Cohen, Miyagi, and Ono.
//!
//! Their suggestion is to vary the formulas used by context, using a
//! \\( \mathbb P\^2 \rightarrow \mathbb P\^2 \\) doubling formula when
//! a doubling is followed
//! by another doubling, a \\( \mathbb P\^2 \rightarrow \mathbb P\^3 \\)
//! doubling formula when a doubling is followed by an addition, and
//! computing point additions using a \\( \mathbb P\^3 \times \mathbb P\^3
//! \rightarrow \mathbb P\^2 \\) formula.
//!
//! The `ref10` reference implementation of [Ed25519][ed25519], by
//! Bernstein, Duif, Lange, Schwabe, and Yang, tweaks
//! this strategy, factoring the addition formulas through the
//! completion \\( \mathbb P\^1 \times \mathbb P\^1 \\), so that the
//! output of an addition or doubling always lies in \\( \mathbb P\^1 \times
//! \mathbb P\^1\\), and the choice of which formula to use is replaced
//! by a choice of whether to convert the result to \\( \mathbb P\^2 \\)
//! or \\(\mathbb P\^3 \\).  However, this tweak is not described in
//! their paper, only in their software.
//!
//! Our naming for the `CompletedPoint` (\\(\mathbb P\^1 \times \mathbb
//! P\^1 \\)), `ProjectivePoint` (\\(\mathbb P\^2 \\)), and
//! `EdwardsPoint` (\\(\mathbb P\^3 \\)) structs follows the naming in
//! Adam Langley's [Golang ed25519][agl-ed25519] implementation, which
//! `curve25519-dalek` was originally derived from.
//!
//! Finally, to accelerate readditions, we use two cached point formats
//! in "Niels coordinates", named for Niels Duif,
//! one for the affine model and one for the \\( \mathbb P\^3 \\) model:
//!
//! * `AffineNielsPoint`: \\( (y+x, y-x, 2dxy) \\)
//! * `ProjectiveNielsPoint`: \\( (Y+X, Y-X, Z, 2dXY) \\)
//!
//! [smith-moderncrypto]: https://moderncrypto.org/mail-archive/curves/2016/000807.html
//! [costello-smith-2017]: https://eprint.iacr.org/2017/212
//! [hisil-wong-carter-dawson-2008]: https://www.iacr.org/archive/asiacrypt2008/53500329/53500329.pdf
//! [bernstein-birkner-joye-lange-peters-2008]: https://eprint.iacr.org/2008/013
//! [cohen-miyaji-ono-1998]: https://link.springer.com/content/pdf/10.1007%2F3-540-49649-1_6.pdf
//! [ed25519]: https://eprint.iacr.org/2011/368
//! [agl-ed25519]: https://github.com/agl/ed25519

#![allow(non_snake_case)]

use core::fmt::Debug;
use core::ops::{Add, Neg, Sub};

use subtle::Choice;
use subtle::ConditionallySelectable;

use zeroize::Zeroize;

use constants;

use edwards::EdwardsPoint;
use field::FieldElement;
use traits::ValidityCheck;

// ------------------------------------------------------------------------
// Internal point representations
// ------------------------------------------------------------------------

/// A `ProjectivePoint` is a point \\((X:Y:Z)\\) on the \\(\mathbb
/// P\^2\\) model of the curve.
/// A point \\((x,y)\\) in the affine model corresponds to
/// \\((x:y:1)\\).
///
/// More details on the relationships between the different curve models
/// can be found in the module-level documentation.
#[derive(Copy, Clone)]
pub struct ProjectivePoint {
    pub X: FieldElement,
    pub Y: FieldElement,
    pub Z: FieldElement,
}

/// A `CompletedPoint` is a point \\(((X:Z), (Y:T))\\) on the \\(\mathbb
/// P\^1 \times \mathbb P\^1 \\) model of the curve.
/// A point (x,y) in the affine model corresponds to \\( ((x:1),(y:1))
/// \\).
///
/// More details on the relationships between the different curve models
/// can be found in the module-level documentation.
#[derive(Copy, Clone)]
#[allow(missing_docs)]
pub struct CompletedPoint {
    pub X: FieldElement,
    pub Y: FieldElement,
    pub Z: FieldElement,
    pub T: FieldElement,
}

/// A pre-computed point in the affine model for the curve, represented as
/// \\((y+x, y-x, 2dxy)\\) in "Niels coordinates".
///
/// More details on the relationships between the different curve models
/// can be found in the module-level documentation.
// Safe to derive Eq because affine coordinates.
#[derive(Copy, Clone, Eq, PartialEq)]
#[allow(missing_docs)]
pub struct AffineNielsPoint {
    pub y_plus_x:  FieldElement,
    pub y_minus_x: FieldElement,
    pub xy2d:      FieldElement,
}

impl Zeroize for AffineNielsPoint {
    fn zeroize(&mut self) {
        self.y_plus_x.zeroize();
        self.y_minus_x.zeroize();
        self.xy2d.zeroize();
    }
}

/// A pre-computed point on the \\( \mathbb P\^3 \\) model for the
/// curve, represented as \\((Y+X, Y-X, Z, 2dXY)\\) in "Niels coordinates".
///
/// More details on the relationships between the different curve models
/// can be found in the module-level documentation.
#[derive(Copy, Clone)]
pub struct ProjectiveNielsPoint {
    pub Y_plus_X:  FieldElement,
    pub Y_minus_X: FieldElement,
    pub Z:         FieldElement,
    pub T2d:       FieldElement,
}

impl Zeroize for ProjectiveNielsPoint {
    fn zeroize(&mut self) {
        self.Y_plus_X.zeroize();
        self.Y_minus_X.zeroize();
        self.Z.zeroize();
        self.T2d.zeroize();
    }
}

// ------------------------------------------------------------------------
// Constructors
// ------------------------------------------------------------------------

use traits::Identity;

impl Identity for ProjectivePoint {
    fn identity() -> ProjectivePoint {
        ProjectivePoint {
            X: FieldElement::zero(),
            Y: FieldElement::one(),
            Z: FieldElement::one(),
        }
    }
}

impl Identity for ProjectiveNielsPoint {
    fn identity() -> ProjectiveNielsPoint {
        ProjectiveNielsPoint{
            Y_plus_X:  FieldElement::one(),
            Y_minus_X: FieldElement::one(),
            Z:         FieldElement::one(),
            T2d:       FieldElement::zero(),
        }
    }
}

impl Default for ProjectiveNielsPoint {
    fn default() -> ProjectiveNielsPoint {
        ProjectiveNielsPoint::identity()
    }
}

impl Identity for AffineNielsPoint {
    fn identity() -> AffineNielsPoint {
        AffineNielsPoint{
            y_plus_x:  FieldElement::one(),
            y_minus_x: FieldElement::one(),
            xy2d:      FieldElement::zero(),
        }
    }
}

impl Default for AffineNielsPoint {
    fn default() -> AffineNielsPoint {
        AffineNielsPoint::identity()
    }
}

// ------------------------------------------------------------------------
// Validity checks (for debugging, not CT)
// ------------------------------------------------------------------------

impl ValidityCheck for ProjectivePoint {
    fn is_valid(&self) -> bool {
        // Curve equation is    -x^2 + y^2 = 1 + d*x^2*y^2,
        // homogenized as (-X^2 + Y^2)*Z^2 = Z^4 + d*X^2*Y^2
        let XX = self.X.square();
        let YY = self.Y.square();
        let ZZ = self.Z.square();
        let ZZZZ = ZZ.square();
        let lhs = &(&YY - &XX) * &ZZ;
        let rhs = &ZZZZ + &(&constants::EDWARDS_D * &(&XX * &YY));

        lhs == rhs
    }
}

// ------------------------------------------------------------------------
// Constant-time assignment
// ------------------------------------------------------------------------

impl ConditionallySelectable for ProjectiveNielsPoint {
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        ProjectiveNielsPoint {
            Y_plus_X: FieldElement::conditional_select(&a.Y_plus_X, &b.Y_plus_X, choice),
            Y_minus_X: FieldElement::conditional_select(&a.Y_minus_X, &b.Y_minus_X, choice),
            Z: FieldElement::conditional_select(&a.Z, &b.Z, choice),
            T2d: FieldElement::conditional_select(&a.T2d, &b.T2d, choice),
        }
    }

    fn conditional_assign(&mut self, other: &Self, choice: Choice) {
        self.Y_plus_X.conditional_assign(&other.Y_plus_X, choice);
        self.Y_minus_X.conditional_assign(&other.Y_minus_X, choice);
        self.Z.conditional_assign(&other.Z, choice);
        self.T2d.conditional_assign(&other.T2d, choice);
    }
}

impl ConditionallySelectable for AffineNielsPoint {
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        AffineNielsPoint {
            y_plus_x: FieldElement::conditional_select(&a.y_plus_x, &b.y_plus_x, choice),
            y_minus_x: FieldElement::conditional_select(&a.y_minus_x, &b.y_minus_x, choice),
            xy2d: FieldElement::conditional_select(&a.xy2d, &b.xy2d, choice),
        }
    }

    fn conditional_assign(&mut self, other: &Self, choice: Choice) {
        self.y_plus_x.conditional_assign(&other.y_plus_x, choice);
        self.y_minus_x.conditional_assign(&other.y_minus_x, choice);
        self.xy2d.conditional_assign(&other.xy2d, choice);
    }
}

// ------------------------------------------------------------------------
// Point conversions
// ------------------------------------------------------------------------

impl ProjectivePoint {
    /// Convert this point from the \\( \mathbb P\^2 \\) model to the
    /// \\( \mathbb P\^3 \\) model.
    ///
    /// This costs \\(3 \mathrm M + 1 \mathrm S\\).
    pub fn to_extended(&self) -> EdwardsPoint {
        EdwardsPoint {
            X: &self.X * &self.Z,
            Y: &self.Y * &self.Z,
            Z: self.Z.square(),
            T: &self.X * &self.Y,
        }
    }
}

impl CompletedPoint {
    /// Convert this point from the \\( \mathbb P\^1 \times \mathbb P\^1
    /// \\) model to the \\( \mathbb P\^2 \\) model.
    ///
    /// This costs \\(3 \mathrm M \\).
    pub fn to_projective(&self) -> ProjectivePoint {
        ProjectivePoint {
            X: &self.X * &self.T,
            Y: &self.Y * &self.Z,
            Z: &self.Z * &self.T,
        }
    }

    /// Convert this point from the \\( \mathbb P\^1 \times \mathbb P\^1
    /// \\) model to the \\( \mathbb P\^3 \\) model.
    ///
    /// This costs \\(4 \mathrm M \\).
    pub fn to_extended(&self) -> EdwardsPoint {
        EdwardsPoint {
            X: &self.X * &self.T,
            Y: &self.Y * &self.Z,
            Z: &self.Z * &self.T,
            T: &self.X * &self.Y,
        }
    }
}

// ------------------------------------------------------------------------
// Doubling
// ------------------------------------------------------------------------

impl ProjectivePoint {
    /// Double this point: return self + self
    pub fn double(&self) -> CompletedPoint { // Double()
        let XX          = self.X.square();
        let YY          = self.Y.square();
        let ZZ2         = self.Z.square2();
        let X_plus_Y    = &self.X + &self.Y;
        let X_plus_Y_sq = X_plus_Y.square();
        let YY_plus_XX  = &YY + &XX;
        let YY_minus_XX = &YY - &XX;

        CompletedPoint{
            X: &X_plus_Y_sq - &YY_plus_XX,
            Y: YY_plus_XX,
            Z: YY_minus_XX,
            T: &ZZ2 - &YY_minus_XX
        }
    }
}

// ------------------------------------------------------------------------
// Addition and Subtraction
// ------------------------------------------------------------------------

// XXX(hdevalence) These were doc(hidden) so they don't appear in the
// public API docs.
// However, that prevents them being used with --document-private-items,
// so comment out the doc(hidden) for now until this is resolved
//
// upstream rust issue: https://github.com/rust-lang/rust/issues/46380
//#[doc(hidden)]
impl<'a, 'b> Add<&'b ProjectiveNielsPoint> for &'a EdwardsPoint {
    type Output = CompletedPoint;

    fn add(self, other: &'b ProjectiveNielsPoint) -> CompletedPoint {
        let Y_plus_X  = &self.Y + &self.X;
        let Y_minus_X = &self.Y - &self.X;
        let PP = &Y_plus_X  * &other.Y_plus_X;
        let MM = &Y_minus_X * &other.Y_minus_X;
        let TT2d = &self.T * &other.T2d;
        let ZZ   = &self.Z * &other.Z;
        let ZZ2  = &ZZ + &ZZ;

        CompletedPoint{
            X: &PP - &MM,
            Y: &PP + &MM,
            Z: &ZZ2 + &TT2d,
            T: &ZZ2 - &TT2d
        }
    }
}

//#[doc(hidden)]
impl<'a, 'b> Sub<&'b ProjectiveNielsPoint> for &'a EdwardsPoint {
    type Output = CompletedPoint;

    fn sub(self, other: &'b ProjectiveNielsPoint) -> CompletedPoint {
        let Y_plus_X  = &self.Y + &self.X;
        let Y_minus_X = &self.Y - &self.X;
        let PM = &Y_plus_X * &other.Y_minus_X;
        let MP = &Y_minus_X  * &other.Y_plus_X;
        let TT2d = &self.T * &other.T2d;
        let ZZ   = &self.Z * &other.Z;
        let ZZ2  = &ZZ + &ZZ;

        CompletedPoint{
            X: &PM - &MP,
            Y: &PM + &MP,
            Z: &ZZ2 - &TT2d,
            T: &ZZ2 + &TT2d
        }
    }
}

//#[doc(hidden)]
impl<'a, 'b> Add<&'b AffineNielsPoint> for &'a EdwardsPoint {
    type Output = CompletedPoint;

    fn add(self, other: &'b AffineNielsPoint) -> CompletedPoint {
        let Y_plus_X  = &self.Y + &self.X;
        let Y_minus_X = &self.Y - &self.X;
        let PP        = &Y_plus_X  * &other.y_plus_x;
        let MM        = &Y_minus_X * &other.y_minus_x;
        let Txy2d     = &self.T * &other.xy2d;
        let Z2        = &self.Z + &self.Z;

        CompletedPoint{
            X: &PP - &MM,
            Y: &PP + &MM,
            Z: &Z2 + &Txy2d,
            T: &Z2 - &Txy2d
        }
    }
}

//#[doc(hidden)]
impl<'a, 'b> Sub<&'b AffineNielsPoint> for &'a EdwardsPoint {
    type Output = CompletedPoint;

    fn sub(self, other: &'b AffineNielsPoint) -> CompletedPoint {
        let Y_plus_X  = &self.Y + &self.X;
        let Y_minus_X = &self.Y - &self.X;
        let PM        = &Y_plus_X  * &other.y_minus_x;
        let MP        = &Y_minus_X * &other.y_plus_x;
        let Txy2d     = &self.T * &other.xy2d;
        let Z2        = &self.Z + &self.Z;

        CompletedPoint{
            X: &PM - &MP,
            Y: &PM + &MP,
            Z: &Z2 - &Txy2d,
            T: &Z2 + &Txy2d
        }
    }
}

// ------------------------------------------------------------------------
// Negation
// ------------------------------------------------------------------------

impl<'a> Neg for &'a ProjectiveNielsPoint {
    type Output = ProjectiveNielsPoint;

    fn neg(self) -> ProjectiveNielsPoint {
        ProjectiveNielsPoint{
            Y_plus_X:   self.Y_minus_X,
            Y_minus_X:  self.Y_plus_X,
            Z:          self.Z,
            T2d:        -(&self.T2d),
        }
    }
}

impl<'a> Neg for &'a AffineNielsPoint {
    type Output = AffineNielsPoint;

    fn neg(self) -> AffineNielsPoint {
        AffineNielsPoint{
            y_plus_x:   self.y_minus_x,
            y_minus_x:  self.y_plus_x,
            xy2d:       -(&self.xy2d)
        }
    }
}

// ------------------------------------------------------------------------
// Debug traits
// ------------------------------------------------------------------------

impl Debug for ProjectivePoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "ProjectivePoint{{\n\tX: {:?},\n\tY: {:?},\n\tZ: {:?}\n}}",
               &self.X, &self.Y, &self.Z)
    }
}

impl Debug for CompletedPoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "CompletedPoint{{\n\tX: {:?},\n\tY: {:?},\n\tZ: {:?},\n\tT: {:?}\n}}",
               &self.X, &self.Y, &self.Z, &self.T)
    }
}

impl Debug for AffineNielsPoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "AffineNielsPoint{{\n\ty_plus_x: {:?},\n\ty_minus_x: {:?},\n\txy2d: {:?}\n}}",
               &self.y_plus_x, &self.y_minus_x, &self.xy2d)
    }
}

impl Debug for ProjectiveNielsPoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "ProjectiveNielsPoint{{\n\tY_plus_X: {:?},\n\tY_minus_X: {:?},\n\tZ: {:?},\n\tT2d: {:?}\n}}",
               &self.Y_plus_X, &self.Y_minus_X, &self.Z, &self.T2d)
    }
}