1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// Portions Copyright 2017 Brian Smith
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>
// - Brian Smith <brian@briansmith.org>

//! Arithmetic on scalars (integers mod the group order).
//!
//! Both the Ristretto group and the Ed25519 basepoint have prime order
//! \\( \ell = 2\^{252} + 27742317777372353535851937790883648493 \\).
//!
//! This code is intended to be useful with both the Ristretto group
//! (where everything is done modulo \\( \ell \\)), and the X/Ed25519
//! setting, which mandates specific bit-twiddles that are not
//! well-defined modulo \\( \ell \\).
//!
//! All arithmetic on `Scalars` is done modulo \\( \ell \\).
//!
//! # Constructing a scalar
//!
//! To create a [`Scalar`](struct.Scalar.html) from a supposedly canonical encoding, use
//! [`Scalar::from_canonical_bytes`](struct.Scalar.html#method.from_canonical_bytes).
//!
//! This function does input validation, ensuring that the input bytes
//! are the canonical encoding of a `Scalar`.
//! If they are, we'll get
//! `Some(Scalar)` in return:
//!
//! ```
//! use curve25519_dalek::scalar::Scalar;
//!
//! let one_as_bytes: [u8; 32] = Scalar::one().to_bytes();
//! let a: Option<Scalar> = Scalar::from_canonical_bytes(one_as_bytes);
//!
//! assert!(a.is_some());
//! ```
//!
//! However, if we give it bytes representing a scalar larger than \\( \ell \\)
//! (in this case, \\( \ell + 2 \\)), we'll get `None` back:
//!
//! ```
//! use curve25519_dalek::scalar::Scalar;
//!
//! let l_plus_two_bytes: [u8; 32] = [
//!    0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
//!    0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
//!    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
//!    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
//! ];
//! let a: Option<Scalar> = Scalar::from_canonical_bytes(l_plus_two_bytes);
//!
//! assert!(a.is_none());
//! ```
//!
//! Another way to create a `Scalar` is by reducing a \\(256\\)-bit integer mod
//! \\( \ell \\), for which one may use the
//! [`Scalar::from_bytes_mod_order`](struct.Scalar.html#method.from_bytes_mod_order)
//! method.  In the case of the second example above, this would reduce the
//! resultant scalar \\( \mod \ell \\), producing \\( 2 \\):
//!
//! ```
//! use curve25519_dalek::scalar::Scalar;
//!
//! let l_plus_two_bytes: [u8; 32] = [
//!    0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
//!    0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
//!    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
//!    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
//! ];
//! let a: Scalar = Scalar::from_bytes_mod_order(l_plus_two_bytes);
//!
//! let two: Scalar = Scalar::one() + Scalar::one();
//!
//! assert!(a == two);
//! ```
//!
//! There is also a constructor that reduces a \\(512\\)-bit integer,
//! [`Scalar::from_bytes_mod_order_wide`](struct.Scalar.html#method.from_bytes_mod_order_wide).
//!
//! To construct a `Scalar` as the hash of some input data, use
//! [`Scalar::hash_from_bytes`](struct.Scalar.html#method.hash_from_bytes),
//! which takes a buffer, or
//! [`Scalar::from_hash`](struct.Scalar.html#method.from_hash),
//! which allows an IUF API.
//!
//! ```
//! # extern crate curve25519_dalek;
//! # extern crate sha2;
//! #
//! # fn main() {
//! use sha2::{Digest, Sha512};
//! use curve25519_dalek::scalar::Scalar;
//!
//! // Hashing a single byte slice
//! let a = Scalar::hash_from_bytes::<Sha512>(b"Abolish ICE");
//!
//! // Streaming data into a hash object
//! let mut hasher = Sha512::default();
//! hasher.update(b"Abolish ");
//! hasher.update(b"ICE");
//! let a2 = Scalar::from_hash(hasher);
//!
//! assert_eq!(a, a2);
//! # }
//! ```
//!
//! Finally, to create a `Scalar` with a specific bit-pattern
//! (e.g., for compatibility with X/Ed25519
//! ["clamping"](https://github.com/isislovecruft/ed25519-dalek/blob/f790bd2ce/src/ed25519.rs#L349)),
//! use [`Scalar::from_bits`](struct.Scalar.html#method.from_bits). This
//! constructs a scalar with exactly the bit pattern given, without any
//! assurances as to reduction modulo the group order:
//!
//! ```
//! use curve25519_dalek::scalar::Scalar;
//!
//! let l_plus_two_bytes: [u8; 32] = [
//!    0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
//!    0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
//!    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
//!    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
//! ];
//! let a: Scalar = Scalar::from_bits(l_plus_two_bytes);
//!
//! let two: Scalar = Scalar::one() + Scalar::one();
//!
//! assert!(a != two);              // the scalar is not reduced (mod l)…
//! assert!(! a.is_canonical());    // …and therefore is not canonical.
//! assert!(a.reduce() == two);     // if we were to reduce it manually, it would be.
//! ```
//!
//! The resulting `Scalar` has exactly the specified bit pattern,
//! **except for the highest bit, which will be set to 0**.

use core::borrow::Borrow;
use core::cmp::{Eq, PartialEq};
use core::fmt::Debug;
use core::iter::{Product, Sum};
use core::ops::Index;
use core::ops::Neg;
use core::ops::{Add, AddAssign};
use core::ops::{Mul, MulAssign};
use core::ops::{Sub, SubAssign};

#[allow(unused_imports)]
use prelude::*;

use rand_core::{CryptoRng, RngCore};

use digest::generic_array::typenum::U64;
use digest::Digest;

use subtle::Choice;
use subtle::ConditionallySelectable;
use subtle::ConstantTimeEq;

use zeroize::Zeroize;

use backend;
use constants;

/// An `UnpackedScalar` represents an element of the field GF(l), optimized for speed.
///
/// This is a type alias for one of the scalar types in the `backend`
/// module.
#[cfg(feature = "fiat_u32_backend")]
type UnpackedScalar = backend::serial::fiat_u32::scalar::Scalar29;
#[cfg(feature = "fiat_u64_backend")]
type UnpackedScalar = backend::serial::fiat_u64::scalar::Scalar52;

/// An `UnpackedScalar` represents an element of the field GF(l), optimized for speed.
///
/// This is a type alias for one of the scalar types in the `backend`
/// module.
#[cfg(feature = "u64_backend")]
type UnpackedScalar = backend::serial::u64::scalar::Scalar52;

/// An `UnpackedScalar` represents an element of the field GF(l), optimized for speed.
///
/// This is a type alias for one of the scalar types in the `backend`
/// module.
#[cfg(feature = "u32_backend")]
type UnpackedScalar = backend::serial::u32::scalar::Scalar29;


/// The `Scalar` struct holds an integer \\(s < 2\^{255} \\) which
/// represents an element of \\(\mathbb Z / \ell\\).
#[derive(Copy, Clone, Hash)]
pub struct Scalar {
    /// `bytes` is a little-endian byte encoding of an integer representing a scalar modulo the
    /// group order.
    ///
    /// # Invariant
    ///
    /// The integer representing this scalar must be bounded above by \\(2\^{255}\\), or
    /// equivalently the high bit of `bytes[31]` must be zero.
    ///
    /// This ensures that there is room for a carry bit when computing a NAF representation.
    //
    // XXX This is pub(crate) so we can write literal constants.  If const fns were stable, we could
    //     make the Scalar constructors const fns and use those instead.
    pub(crate) bytes: [u8; 32],
}

impl Scalar {
    /// Construct a `Scalar` by reducing a 256-bit little-endian integer
    /// modulo the group order \\( \ell \\).
    pub fn from_bytes_mod_order(bytes: [u8; 32]) -> Scalar {
        // Temporarily allow s_unreduced.bytes > 2^255 ...
        let s_unreduced = Scalar{bytes};

        // Then reduce mod the group order and return the reduced representative.
        let s = s_unreduced.reduce();
        debug_assert_eq!(0u8, s[31] >> 7);

        s
    }

    /// Construct a `Scalar` by reducing a 512-bit little-endian integer
    /// modulo the group order \\( \ell \\).
    pub fn from_bytes_mod_order_wide(input: &[u8; 64]) -> Scalar {
        UnpackedScalar::from_bytes_wide(input).pack()
    }

    /// Attempt to construct a `Scalar` from a canonical byte representation.
    ///
    /// # Return
    ///
    /// - `Some(s)`, where `s` is the `Scalar` corresponding to `bytes`,
    ///   if `bytes` is a canonical byte representation;
    /// - `None` if `bytes` is not a canonical byte representation.
    pub fn from_canonical_bytes(bytes: [u8; 32]) -> Option<Scalar> {
        // Check that the high bit is not set
        if (bytes[31] >> 7) != 0u8 { return None; }
        let candidate = Scalar::from_bits(bytes);

        if candidate.is_canonical() {
            Some(candidate)
        } else {
            None
        }
    }

    /// Construct a `Scalar` from the low 255 bits of a 256-bit integer.
    ///
    /// This function is intended for applications like X25519 which
    /// require specific bit-patterns when performing scalar
    /// multiplication.
    pub const fn from_bits(bytes: [u8; 32]) -> Scalar {
        let mut s = Scalar{bytes};
        // Ensure that s < 2^255 by masking the high bit
        s.bytes[31] &= 0b0111_1111;

        s
    }
}

impl Debug for Scalar {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "Scalar{{\n\tbytes: {:?},\n}}", &self.bytes)
    }
}

impl Eq for Scalar {}
impl PartialEq for Scalar {
    fn eq(&self, other: &Self) -> bool {
        self.ct_eq(other).unwrap_u8() == 1u8
    }
}

impl ConstantTimeEq for Scalar {
    fn ct_eq(&self, other: &Self) -> Choice {
        self.bytes.ct_eq(&other.bytes)
    }
}

impl Index<usize> for Scalar {
    type Output = u8;

    /// Index the bytes of the representative for this `Scalar`.  Mutation is not permitted.
    fn index(&self, _index: usize) -> &u8 {
        &(self.bytes[_index])
    }
}

impl<'b> MulAssign<&'b Scalar> for Scalar {
    fn mul_assign(&mut self, _rhs: &'b Scalar) {
        *self = UnpackedScalar::mul(&self.unpack(), &_rhs.unpack()).pack();
    }
}

define_mul_assign_variants!(LHS = Scalar, RHS = Scalar);

impl<'a, 'b> Mul<&'b Scalar> for &'a Scalar {
    type Output = Scalar;
    fn mul(self, _rhs: &'b Scalar) -> Scalar {
        UnpackedScalar::mul(&self.unpack(), &_rhs.unpack()).pack()
    }
}

define_mul_variants!(LHS = Scalar, RHS = Scalar, Output = Scalar);

impl<'b> AddAssign<&'b Scalar> for Scalar {
    fn add_assign(&mut self, _rhs: &'b Scalar) {
        *self = *self + _rhs;
    }
}

define_add_assign_variants!(LHS = Scalar, RHS = Scalar);

impl<'a, 'b> Add<&'b Scalar> for &'a Scalar {
    type Output = Scalar;
    #[allow(non_snake_case)]
    fn add(self, _rhs: &'b Scalar) -> Scalar {
        // The UnpackedScalar::add function produces reduced outputs
        // if the inputs are reduced.  However, these inputs may not
        // be reduced -- they might come from Scalar::from_bits.  So
        // after computing the sum, we explicitly reduce it mod l
        // before repacking.
        let sum = UnpackedScalar::add(&self.unpack(), &_rhs.unpack());
        let sum_R = UnpackedScalar::mul_internal(&sum, &constants::R);
        let sum_mod_l = UnpackedScalar::montgomery_reduce(&sum_R);
        sum_mod_l.pack()
    }
}

define_add_variants!(LHS = Scalar, RHS = Scalar, Output = Scalar);

impl<'b> SubAssign<&'b Scalar> for Scalar {
    fn sub_assign(&mut self, _rhs: &'b Scalar) {
        *self = *self - _rhs;
    }
}

define_sub_assign_variants!(LHS = Scalar, RHS = Scalar);

impl<'a, 'b> Sub<&'b Scalar> for &'a Scalar {
    type Output = Scalar;
    #[allow(non_snake_case)]
    fn sub(self, rhs: &'b Scalar) -> Scalar {
        // The UnpackedScalar::sub function requires reduced inputs
        // and produces reduced output. However, these inputs may not
        // be reduced -- they might come from Scalar::from_bits.  So
        // we explicitly reduce the inputs.
        let self_R = UnpackedScalar::mul_internal(&self.unpack(), &constants::R);
        let self_mod_l = UnpackedScalar::montgomery_reduce(&self_R);
        let rhs_R = UnpackedScalar::mul_internal(&rhs.unpack(), &constants::R);
        let rhs_mod_l = UnpackedScalar::montgomery_reduce(&rhs_R);

        UnpackedScalar::sub(&self_mod_l, &rhs_mod_l).pack()
    }
}

define_sub_variants!(LHS = Scalar, RHS = Scalar, Output = Scalar);

impl<'a> Neg for &'a Scalar {
    type Output = Scalar;
    #[allow(non_snake_case)]
    fn neg(self) -> Scalar {
        let self_R = UnpackedScalar::mul_internal(&self.unpack(), &constants::R);
        let self_mod_l = UnpackedScalar::montgomery_reduce(&self_R);
        UnpackedScalar::sub(&UnpackedScalar::zero(), &self_mod_l).pack()
    }
}

impl<'a> Neg for Scalar {
    type Output = Scalar;
    fn neg(self) -> Scalar {
        -&self
    }
}

impl ConditionallySelectable for Scalar {
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        let mut bytes = [0u8; 32];
        for i in 0..32 {
            bytes[i] = u8::conditional_select(&a.bytes[i], &b.bytes[i], choice);
        }
        Scalar { bytes }
    }
}

#[cfg(feature = "serde")]
use serde::{self, Serialize, Deserialize, Serializer, Deserializer};
#[cfg(feature = "serde")]
use serde::de::Visitor;

#[cfg(feature = "serde")]
impl Serialize for Scalar {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where S: Serializer
    {
        use serde::ser::SerializeTuple;
        let mut tup = serializer.serialize_tuple(32)?;
        for byte in self.as_bytes().iter() {
            tup.serialize_element(byte)?;
        }
        tup.end()
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Scalar {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where D: Deserializer<'de>
    {
        struct ScalarVisitor;

        impl<'de> Visitor<'de> for ScalarVisitor {
            type Value = Scalar;

            fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
                formatter.write_str("a valid point in Edwards y + sign format")
            }

            fn visit_seq<A>(self, mut seq: A) -> Result<Scalar, A::Error>
                where A: serde::de::SeqAccess<'de>
            {
                let mut bytes = [0u8; 32];
                for i in 0..32 {
                    bytes[i] = seq.next_element()?
                        .ok_or(serde::de::Error::invalid_length(i, &"expected 32 bytes"))?;
                }
                Scalar::from_canonical_bytes(bytes)
                    .ok_or(serde::de::Error::custom(
                        &"scalar was not canonically encoded"
                    ))
            }
        }

        deserializer.deserialize_tuple(32, ScalarVisitor)
    }
}

impl<T> Product<T> for Scalar
where
    T: Borrow<Scalar>
{
    fn product<I>(iter: I) -> Self
    where
        I: Iterator<Item = T>
    {
        iter.fold(Scalar::one(), |acc, item| acc * item.borrow())
    }
}

impl<T> Sum<T> for Scalar
where
    T: Borrow<Scalar>
{
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = T>
    {
        iter.fold(Scalar::zero(), |acc, item| acc + item.borrow())
    }
}

impl Default for Scalar {
    fn default() -> Scalar {
        Scalar::zero()
    }
}

impl From<u8> for Scalar {
    fn from(x: u8) -> Scalar {
        let mut s_bytes = [0u8; 32];
        s_bytes[0] = x;
        Scalar{ bytes: s_bytes }
    }
}

impl From<u16> for Scalar {
    fn from(x: u16) -> Scalar {
        use byteorder::{ByteOrder, LittleEndian};
        let mut s_bytes = [0u8; 32];
        LittleEndian::write_u16(&mut s_bytes, x);
        Scalar{ bytes: s_bytes }
    }
}

impl From<u32> for Scalar {
    fn from(x: u32) -> Scalar {
        use byteorder::{ByteOrder, LittleEndian};
        let mut s_bytes = [0u8; 32];
        LittleEndian::write_u32(&mut s_bytes, x);
        Scalar{ bytes: s_bytes }
    }
}

impl From<u64> for Scalar {
    /// Construct a scalar from the given `u64`.
    ///
    /// # Inputs
    ///
    /// An `u64` to convert to a `Scalar`.
    ///
    /// # Returns
    ///
    /// A `Scalar` corresponding to the input `u64`.
    ///
    /// # Example
    ///
    /// ```
    /// use curve25519_dalek::scalar::Scalar;
    ///
    /// let fourtytwo = Scalar::from(42u64);
    /// let six = Scalar::from(6u64);
    /// let seven = Scalar::from(7u64);
    ///
    /// assert!(fourtytwo == six * seven);
    /// ```
    fn from(x: u64) -> Scalar {
        use byteorder::{ByteOrder, LittleEndian};
        let mut s_bytes = [0u8; 32];
        LittleEndian::write_u64(&mut s_bytes, x);
        Scalar{ bytes: s_bytes }
    }
}

impl From<u128> for Scalar {
    fn from(x: u128) -> Scalar {
        use byteorder::{ByteOrder, LittleEndian};
        let mut s_bytes = [0u8; 32];
        LittleEndian::write_u128(&mut s_bytes, x);
        Scalar{ bytes: s_bytes }
    }
}

impl Zeroize for Scalar {
    fn zeroize(&mut self) {
        self.bytes.zeroize();
    }
}

impl Scalar {
    /// Return a `Scalar` chosen uniformly at random using a user-provided RNG.
    ///
    /// # Inputs
    ///
    /// * `rng`: any RNG which implements the `RngCore + CryptoRng` interface.
    ///
    /// # Returns
    ///
    /// A random scalar within ℤ/lℤ.
    ///
    /// # Example
    ///
    /// ```
    /// extern crate rand_core;
    /// # extern crate curve25519_dalek;
    /// #
    /// # fn main() {
    /// use curve25519_dalek::scalar::Scalar;
    ///
    /// use rand_core::OsRng;
    ///
    /// let mut csprng = OsRng;
    /// let a: Scalar = Scalar::random(&mut csprng);
    /// # }
    pub fn random<R: RngCore + CryptoRng>(rng: &mut R) -> Self {
        let mut scalar_bytes = [0u8; 64];
        rng.fill_bytes(&mut scalar_bytes);
        Scalar::from_bytes_mod_order_wide(&scalar_bytes)
    }

    /// Hash a slice of bytes into a scalar.
    ///
    /// Takes a type parameter `D`, which is any `Digest` producing 64
    /// bytes (512 bits) of output.
    ///
    /// Convenience wrapper around `from_hash`.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate curve25519_dalek;
    /// # use curve25519_dalek::scalar::Scalar;
    /// extern crate sha2;
    ///
    /// use sha2::Sha512;
    ///
    /// # // Need fn main() here in comment so the doctest compiles
    /// # // See https://doc.rust-lang.org/book/documentation.html#documentation-as-tests
    /// # fn main() {
    /// let msg = "To really appreciate architecture, you may even need to commit a murder";
    /// let s = Scalar::hash_from_bytes::<Sha512>(msg.as_bytes());
    /// # }
    /// ```
    pub fn hash_from_bytes<D>(input: &[u8]) -> Scalar
        where D: Digest<OutputSize = U64> + Default
    {
        let mut hash = D::default();
        hash.update(input);
        Scalar::from_hash(hash)
    }

    /// Construct a scalar from an existing `Digest` instance.
    ///
    /// Use this instead of `hash_from_bytes` if it is more convenient
    /// to stream data into the `Digest` than to pass a single byte
    /// slice.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate curve25519_dalek;
    /// # use curve25519_dalek::scalar::Scalar;
    /// extern crate sha2;
    ///
    /// use sha2::Digest;
    /// use sha2::Sha512;
    ///
    /// # fn main() {
    /// let mut h = Sha512::new()
    ///     .chain("To really appreciate architecture, you may even need to commit a murder.")
    ///     .chain("While the programs used for The Manhattan Transcripts are of the most extreme")
    ///     .chain("nature, they also parallel the most common formula plot: the archetype of")
    ///     .chain("murder. Other phantasms were occasionally used to underline the fact that")
    ///     .chain("perhaps all architecture, rather than being about functional standards, is")
    ///     .chain("about love and death.");
    ///
    /// let s = Scalar::from_hash(h);
    ///
    /// println!("{:?}", s.to_bytes());
    /// assert!(s == Scalar::from_bits([ 21,  88, 208, 252,  63, 122, 210, 152,
    ///                                 154,  38,  15,  23,  16, 167,  80, 150,
    ///                                 192, 221,  77, 226,  62,  25, 224, 148,
    ///                                 239,  48, 176,  10, 185,  69, 168,  11, ]));
    /// # }
    /// ```
    pub fn from_hash<D>(hash: D) -> Scalar
        where D: Digest<OutputSize = U64>
    {
        let mut output = [0u8; 64];
        output.copy_from_slice(hash.finalize().as_slice());
        Scalar::from_bytes_mod_order_wide(&output)
    }

    /// Convert this `Scalar` to its underlying sequence of bytes.
    ///
    /// # Example
    ///
    /// ```
    /// use curve25519_dalek::scalar::Scalar;
    ///
    /// let s: Scalar = Scalar::zero();
    ///
    /// assert!(s.to_bytes() == [0u8; 32]);
    /// ```
    pub fn to_bytes(&self) -> [u8; 32] {
        self.bytes
    }

    /// View the little-endian byte encoding of the integer representing this Scalar.
    ///
    /// # Example
    ///
    /// ```
    /// use curve25519_dalek::scalar::Scalar;
    ///
    /// let s: Scalar = Scalar::zero();
    ///
    /// assert!(s.as_bytes() == &[0u8; 32]);
    /// ```
    pub fn as_bytes(&self) -> &[u8; 32] {
        &self.bytes
    }

    /// Construct the scalar \\( 0 \\).
    pub fn zero() -> Self {
        Scalar { bytes: [0u8; 32]}
    }

    /// Construct the scalar \\( 1 \\).
    pub fn one() -> Self {
        Scalar {
            bytes: [
                1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
            ],
        }
    }

    /// Given a nonzero `Scalar`, compute its multiplicative inverse.
    ///
    /// # Warning
    ///
    /// `self` **MUST** be nonzero.  If you cannot
    /// *prove* that this is the case, you **SHOULD NOT USE THIS
    /// FUNCTION**.
    ///
    /// # Returns
    ///
    /// The multiplicative inverse of the this `Scalar`.
    ///
    /// # Example
    ///
    /// ```
    /// use curve25519_dalek::scalar::Scalar;
    ///
    /// // x = 2238329342913194256032495932344128051776374960164957527413114840482143558222
    /// let X: Scalar = Scalar::from_bytes_mod_order([
    ///         0x4e, 0x5a, 0xb4, 0x34, 0x5d, 0x47, 0x08, 0x84,
    ///         0x59, 0x13, 0xb4, 0x64, 0x1b, 0xc2, 0x7d, 0x52,
    ///         0x52, 0xa5, 0x85, 0x10, 0x1b, 0xcc, 0x42, 0x44,
    ///         0xd4, 0x49, 0xf4, 0xa8, 0x79, 0xd9, 0xf2, 0x04,
    ///     ]);
    /// // 1/x = 6859937278830797291664592131120606308688036382723378951768035303146619657244
    /// let XINV: Scalar = Scalar::from_bytes_mod_order([
    ///         0x1c, 0xdc, 0x17, 0xfc, 0xe0, 0xe9, 0xa5, 0xbb,
    ///         0xd9, 0x24, 0x7e, 0x56, 0xbb, 0x01, 0x63, 0x47,
    ///         0xbb, 0xba, 0x31, 0xed, 0xd5, 0xa9, 0xbb, 0x96,
    ///         0xd5, 0x0b, 0xcd, 0x7a, 0x3f, 0x96, 0x2a, 0x0f,
    ///     ]);
    ///
    /// let inv_X: Scalar = X.invert();
    /// assert!(XINV == inv_X);
    /// let should_be_one: Scalar = &inv_X * &X;
    /// assert!(should_be_one == Scalar::one());
    /// ```
    pub fn invert(&self) -> Scalar {
        self.unpack().invert().pack()
    }

    /// Given a slice of nonzero (possibly secret) `Scalar`s,
    /// compute their inverses in a batch.
    ///
    /// # Return
    ///
    /// Each element of `inputs` is replaced by its inverse.
    ///
    /// The product of all inverses is returned.
    ///
    /// # Warning
    ///
    /// All input `Scalars` **MUST** be nonzero.  If you cannot
    /// *prove* that this is the case, you **SHOULD NOT USE THIS
    /// FUNCTION**.
    ///
    /// # Example
    ///
    /// ```
    /// # extern crate curve25519_dalek;
    /// # use curve25519_dalek::scalar::Scalar;
    /// # fn main() {
    /// let mut scalars = [
    ///     Scalar::from(3u64),
    ///     Scalar::from(5u64),
    ///     Scalar::from(7u64),
    ///     Scalar::from(11u64),
    /// ];
    ///
    /// let allinv = Scalar::batch_invert(&mut scalars);
    ///
    /// assert_eq!(allinv, Scalar::from(3*5*7*11u64).invert());
    /// assert_eq!(scalars[0], Scalar::from(3u64).invert());
    /// assert_eq!(scalars[1], Scalar::from(5u64).invert());
    /// assert_eq!(scalars[2], Scalar::from(7u64).invert());
    /// assert_eq!(scalars[3], Scalar::from(11u64).invert());
    /// # }
    /// ```
    #[cfg(feature = "alloc")]
    pub fn batch_invert(inputs: &mut [Scalar]) -> Scalar {
        // This code is essentially identical to the FieldElement
        // implementation, and is documented there.  Unfortunately,
        // it's not easy to write it generically, since here we want
        // to use `UnpackedScalar`s internally, and `Scalar`s
        // externally, but there's no corresponding distinction for
        // field elements.

        use zeroize::Zeroizing;

        let n = inputs.len();
        let one: UnpackedScalar = Scalar::one().unpack().to_montgomery();

        // Place scratch storage in a Zeroizing wrapper to wipe it when
        // we pass out of scope.
        let scratch_vec = vec![one; n];
        let mut scratch = Zeroizing::new(scratch_vec);

        // Keep an accumulator of all of the previous products
        let mut acc = Scalar::one().unpack().to_montgomery();

        // Pass through the input vector, recording the previous
        // products in the scratch space
        for (input, scratch) in inputs.iter_mut().zip(scratch.iter_mut()) {
            *scratch = acc;

            // Avoid unnecessary Montgomery multiplication in second pass by
            // keeping inputs in Montgomery form
            let tmp = input.unpack().to_montgomery();
            *input = tmp.pack();
            acc = UnpackedScalar::montgomery_mul(&acc, &tmp);
        }

        // acc is nonzero iff all inputs are nonzero
        debug_assert!(acc.pack() != Scalar::zero());

        // Compute the inverse of all products
        acc = acc.montgomery_invert().from_montgomery();

        // We need to return the product of all inverses later
        let ret = acc.pack();

        // Pass through the vector backwards to compute the inverses
        // in place
        for (input, scratch) in inputs.iter_mut().rev().zip(scratch.iter().rev()) {
            let tmp = UnpackedScalar::montgomery_mul(&acc, &input.unpack());
            *input = UnpackedScalar::montgomery_mul(&acc, &scratch).pack();
            acc = tmp;
        }

        ret
    }

    /// Get the bits of the scalar.
    pub(crate) fn bits(&self) -> [i8; 256] {
        let mut bits = [0i8; 256];
        for i in 0..256 {
            // As i runs from 0..256, the bottom 3 bits index the bit,
            // while the upper bits index the byte.
            bits[i] = ((self.bytes[i>>3] >> (i&7)) & 1u8) as i8;
        }
        bits
    }

    /// Compute a width-\\(w\\) "Non-Adjacent Form" of this scalar.
    ///
    /// A width-\\(w\\) NAF of a positive integer \\(k\\) is an expression
    /// $$
    /// k = \sum_{i=0}\^m n\_i 2\^i,
    /// $$
    /// where each nonzero
    /// coefficient \\(n\_i\\) is odd and bounded by \\(|n\_i| < 2\^{w-1}\\),
    /// \\(n\_{m-1}\\) is nonzero, and at most one of any \\(w\\) consecutive
    /// coefficients is nonzero.  (Hankerson, Menezes, Vanstone; def 3.32).
    ///
    /// The length of the NAF is at most one more than the length of
    /// the binary representation of \\(k\\).  This is why the
    /// `Scalar` type maintains an invariant that the top bit is
    /// \\(0\\), so that the NAF of a scalar has at most 256 digits.
    ///
    /// Intuitively, this is like a binary expansion, except that we
    /// allow some coefficients to grow in magnitude up to
    /// \\(2\^{w-1}\\) so that the nonzero coefficients are as sparse
    /// as possible.
    ///
    /// When doing scalar multiplication, we can then use a lookup
    /// table of precomputed multiples of a point to add the nonzero
    /// terms \\( k_i P \\).  Using signed digits cuts the table size
    /// in half, and using odd digits cuts the table size in half
    /// again.
    ///
    /// To compute a \\(w\\)-NAF, we use a modification of Algorithm 3.35 of HMV:
    ///
    /// 1. \\( i \gets 0 \\)
    /// 2. While \\( k \ge 1 \\):
    ///     1. If \\(k\\) is odd, \\( n_i \gets k \operatorname{mods} 2^w \\), \\( k \gets k - n_i \\).
    ///     2. If \\(k\\) is even, \\( n_i \gets 0 \\).
    ///     3. \\( k \gets k / 2 \\), \\( i \gets i + 1 \\).
    /// 3. Return \\( n_0, n_1, ... , \\)
    ///
    /// Here \\( \bar x = x \operatorname{mods} 2^w \\) means the
    /// \\( \bar x \\) with \\( \bar x \equiv x \pmod{2^w} \\) and
    /// \\( -2^{w-1} \leq \bar x < 2^w \\).
    ///
    /// We implement this by scanning across the bits of \\(k\\) from
    /// least-significant bit to most-significant-bit.
    /// Write the bits of \\(k\\) as
    /// $$
    /// k = \sum\_{i=0}\^m k\_i 2^i,
    /// $$
    /// and split the sum as
    /// $$
    /// k = \sum\_{i=0}^{w-1} k\_i 2^i + 2^w \sum\_{i=0} k\_{i+w} 2^i
    /// $$
    /// where the first part is \\( k \mod 2^w \\).
    ///
    /// If \\( k \mod 2^w\\) is odd, and \\( k \mod 2^w < 2^{w-1} \\), then we emit
    /// \\( n_0 = k \mod 2^w \\).  Instead of computing
    /// \\( k - n_0 \\), we just advance \\(w\\) bits and reindex.
    ///
    /// If \\( k \mod 2^w\\) is odd, and \\( k \mod 2^w \ge 2^{w-1} \\), then
    /// \\( n_0 = k \operatorname{mods} 2^w = k \mod 2^w - 2^w \\).
    /// The quantity \\( k - n_0 \\) is
    /// $$
    /// \begin{aligned}
    /// k - n_0 &= \sum\_{i=0}^{w-1} k\_i 2^i + 2^w \sum\_{i=0} k\_{i+w} 2^i
    ///          - \sum\_{i=0}^{w-1} k\_i 2^i + 2^w \\\\
    /// &= 2^w + 2^w \sum\_{i=0} k\_{i+w} 2^i
    /// \end{aligned}
    /// $$
    /// so instead of computing the subtraction, we can set a carry
    /// bit, advance \\(w\\) bits, and reindex.
    ///
    /// If \\( k \mod 2^w\\) is even, we emit \\(0\\), advance 1 bit
    /// and reindex.  In fact, by setting all digits to \\(0\\)
    /// initially, we don't need to emit anything.
    pub(crate) fn non_adjacent_form(&self, w: usize) -> [i8; 256] {
        // required by the NAF definition
        debug_assert!( w >= 2 );
        // required so that the NAF digits fit in i8
        debug_assert!( w <= 8 );

        use byteorder::{ByteOrder, LittleEndian};

        let mut naf = [0i8; 256];

        let mut x_u64 = [0u64; 5];
        LittleEndian::read_u64_into(&self.bytes, &mut x_u64[0..4]);

        let width = 1 << w;
        let window_mask = width - 1;

        let mut pos = 0;
        let mut carry = 0;
        while pos < 256 {
            // Construct a buffer of bits of the scalar, starting at bit `pos`
            let u64_idx = pos / 64;
            let bit_idx = pos % 64;
            let bit_buf: u64;
            if bit_idx < 64 - w {
                // This window's bits are contained in a single u64
                bit_buf = x_u64[u64_idx] >> bit_idx;
            } else {
                // Combine the current u64's bits with the bits from the next u64
                bit_buf = (x_u64[u64_idx] >> bit_idx) | (x_u64[1+u64_idx] << (64 - bit_idx));
            }

            // Add the carry into the current window
            let window = carry + (bit_buf & window_mask);

            if window & 1 == 0 {
                // If the window value is even, preserve the carry and continue.
                // Why is the carry preserved?
                // If carry == 0 and window & 1 == 0, then the next carry should be 0
                // If carry == 1 and window & 1 == 0, then bit_buf & 1 == 1 so the next carry should be 1
                pos += 1;
                continue;
            }

            if window < width/2 {
                carry = 0;
                naf[pos] = window as i8;
            } else {
                carry = 1;
                naf[pos] = (window as i8).wrapping_sub(width as i8);
            }

            pos += w;
        }

        naf
    }

    /// Write this scalar in radix 16, with coefficients in \\([-8,8)\\),
    /// i.e., compute \\(a\_i\\) such that
    /// $$
    ///    a = a\_0 + a\_1 16\^1 + \cdots + a_{63} 16\^{63},
    /// $$
    /// with \\(-8 \leq a_i < 8\\) for \\(0 \leq i < 63\\) and \\(-8 \leq a_{63} \leq 8\\).
    pub(crate) fn to_radix_16(&self) -> [i8; 64] {
        debug_assert!(self[31] <= 127);
        let mut output = [0i8; 64];

        // Step 1: change radix.
        // Convert from radix 256 (bytes) to radix 16 (nibbles)
        #[inline(always)]
        fn bot_half(x: u8) -> u8 { (x >> 0) & 15 }
        #[inline(always)]
        fn top_half(x: u8) -> u8 { (x >> 4) & 15 }

        for i in 0..32 {
            output[2*i  ] = bot_half(self[i]) as i8;
            output[2*i+1] = top_half(self[i]) as i8;
        }
        // Precondition note: since self[31] <= 127, output[63] <= 7

        // Step 2: recenter coefficients from [0,16) to [-8,8)
        for i in 0..63 {
            let carry    = (output[i] + 8) >> 4;
            output[i  ] -= carry << 4;
            output[i+1] += carry;
        }
        // Precondition note: output[63] is not recentered.  It
        // increases by carry <= 1.  Thus output[63] <= 8.

        output
    }

    /// Returns a size hint indicating how many entries of the return
    /// value of `to_radix_2w` are nonzero.
    pub(crate) fn to_radix_2w_size_hint(w: usize) -> usize {
        debug_assert!(w >= 4);
        debug_assert!(w <= 8);

        let digits_count = match w {
            4 => (256 + w - 1)/w as usize,
            5 => (256 + w - 1)/w as usize,
            6 => (256 + w - 1)/w as usize,
            7 => (256 + w - 1)/w as usize,
            // See comment in to_radix_2w on handling the terminal carry.
            8 => (256 + w - 1)/w + 1 as usize,
            _ => panic!("invalid radix parameter"),
        };

        debug_assert!(digits_count <= 64);
        digits_count
    }

    /// Creates a representation of a Scalar in radix 32, 64, 128 or 256 for use with the Pippenger algorithm.
    /// For lower radix, use `to_radix_16`, which is used by the Straus multi-scalar multiplication.
    /// Higher radixes are not supported to save cache space. Radix 256 is near-optimal even for very
    /// large inputs.
    ///
    /// Radix below 32 or above 256 is prohibited.
    /// This method returns digits in a fixed-sized array, excess digits are zeroes.
    ///
    /// ## Scalar representation
    ///
    /// Radix \\(2\^w\\), with \\(n = ceil(256/w)\\) coefficients in \\([-(2\^w)/2,(2\^w)/2)\\),
    /// i.e., scalar is represented using digits \\(a\_i\\) such that
    /// $$
    ///    a = a\_0 + a\_1 2\^1w + \cdots + a_{n-1} 2\^{w*(n-1)},
    /// $$
    /// with \\(-2\^w/2 \leq a_i < 2\^w/2\\) for \\(0 \leq i < (n-1)\\) and \\(-2\^w/2 \leq a_{n-1} \leq 2\^w/2\\).
    ///
    pub(crate) fn to_radix_2w(&self, w: usize) -> [i8; 64] {
        debug_assert!(w >= 4);
        debug_assert!(w <= 8);

        if w == 4 {
            return self.to_radix_16();
        }

        use byteorder::{ByteOrder, LittleEndian};

        // Scalar formatted as four `u64`s with carry bit packed into the highest bit.
        let mut scalar64x4 = [0u64; 4];
        LittleEndian::read_u64_into(&self.bytes, &mut scalar64x4[0..4]);

        let radix: u64 = 1 << w;
        let window_mask: u64 = radix - 1;

        let mut carry = 0u64;
        let mut digits = [0i8; 64];
        let digits_count = (256 + w - 1)/w as usize;
        for i in 0..digits_count {
            // Construct a buffer of bits of the scalar, starting at `bit_offset`.
            let bit_offset = i*w;
            let u64_idx = bit_offset / 64;
            let bit_idx = bit_offset % 64;

            // Read the bits from the scalar
            let bit_buf: u64;
            if bit_idx < 64 - w  || u64_idx == 3 {
                // This window's bits are contained in a single u64,
                // or it's the last u64 anyway.
                bit_buf = scalar64x4[u64_idx] >> bit_idx;
            } else {
                // Combine the current u64's bits with the bits from the next u64
                bit_buf = (scalar64x4[u64_idx] >> bit_idx) | (scalar64x4[1+u64_idx] << (64 - bit_idx));
            }

            // Read the actual coefficient value from the window
            let coef = carry + (bit_buf & window_mask); // coef = [0, 2^r)

             // Recenter coefficients from [0,2^w) to [-2^w/2, 2^w/2)
            carry = (coef + (radix/2) as u64) >> w;
            digits[i] = ((coef as i64) - (carry << w) as i64) as i8;
        }

        // When w < 8, we can fold the final carry onto the last digit d,
        // because d < 2^w/2 so d + carry*2^w = d + 1*2^w < 2^(w+1) < 2^8.
        //
        // When w = 8, we can't fit carry*2^w into an i8.  This should
        // not happen anyways, because the final carry will be 0 for
        // reduced scalars, but the Scalar invariant allows 255-bit scalars.
        // To handle this, we expand the size_hint by 1 when w=8,
        // and accumulate the final carry onto another digit.
        match w {
            8 => digits[digits_count] += carry as i8,
            _ => digits[digits_count-1] += (carry << w) as i8,
        }

        digits
    }

    /// Unpack this `Scalar` to an `UnpackedScalar` for faster arithmetic.
    pub(crate) fn unpack(&self) -> UnpackedScalar {
        UnpackedScalar::from_bytes(&self.bytes)
    }

    /// Reduce this `Scalar` modulo \\(\ell\\).
    #[allow(non_snake_case)]
    pub fn reduce(&self) -> Scalar {
        let x = self.unpack();
        let xR = UnpackedScalar::mul_internal(&x, &constants::R);
        let x_mod_l = UnpackedScalar::montgomery_reduce(&xR);
        x_mod_l.pack()
    }

    /// Check whether this `Scalar` is the canonical representative mod \\(\ell\\).
    ///
    /// This is intended for uses like input validation, where variable-time code is acceptable.
    ///
    /// ```
    /// # extern crate curve25519_dalek;
    /// # extern crate subtle;
    /// # use curve25519_dalek::scalar::Scalar;
    /// # use subtle::ConditionallySelectable;
    /// # fn main() {
    /// // 2^255 - 1, since `from_bits` clears the high bit
    /// let _2_255_minus_1 = Scalar::from_bits([0xff;32]);
    /// assert!(!_2_255_minus_1.is_canonical());
    ///
    /// let reduced = _2_255_minus_1.reduce();
    /// assert!(reduced.is_canonical());
    /// # }
    /// ```
    pub fn is_canonical(&self) -> bool {
        *self == self.reduce()
    }
}

impl UnpackedScalar {
    /// Pack the limbs of this `UnpackedScalar` into a `Scalar`.
    fn pack(&self) -> Scalar {
        Scalar{ bytes: self.to_bytes() }
    }

    /// Inverts an UnpackedScalar in Montgomery form.
    pub fn montgomery_invert(&self) -> UnpackedScalar {
        // Uses the addition chain from
        // https://briansmith.org/ecc-inversion-addition-chains-01#curve25519_scalar_inversion
        let    _1 = self;
        let   _10 = _1.montgomery_square();
        let  _100 = _10.montgomery_square();
        let   _11 = UnpackedScalar::montgomery_mul(&_10,     &_1);
        let  _101 = UnpackedScalar::montgomery_mul(&_10,    &_11);
        let  _111 = UnpackedScalar::montgomery_mul(&_10,   &_101);
        let _1001 = UnpackedScalar::montgomery_mul(&_10,   &_111);
        let _1011 = UnpackedScalar::montgomery_mul(&_10,  &_1001);
        let _1111 = UnpackedScalar::montgomery_mul(&_100, &_1011);

        // _10000
        let mut y = UnpackedScalar::montgomery_mul(&_1111, &_1);

        #[inline]
        fn square_multiply(y: &mut UnpackedScalar, squarings: usize, x: &UnpackedScalar) {
            for _ in 0..squarings {
                *y = y.montgomery_square();
            }
            *y = UnpackedScalar::montgomery_mul(y, x);
        }

        square_multiply(&mut y, 123 + 3, &_101);
        square_multiply(&mut y,   2 + 2, &_11);
        square_multiply(&mut y,   1 + 4, &_1111);
        square_multiply(&mut y,   1 + 4, &_1111);
        square_multiply(&mut y,       4, &_1001);
        square_multiply(&mut y,       2, &_11);
        square_multiply(&mut y,   1 + 4, &_1111);
        square_multiply(&mut y,   1 + 3, &_101);
        square_multiply(&mut y,   3 + 3, &_101);
        square_multiply(&mut y,       3, &_111);
        square_multiply(&mut y,   1 + 4, &_1111);
        square_multiply(&mut y,   2 + 3, &_111);
        square_multiply(&mut y,   2 + 2, &_11);
        square_multiply(&mut y,   1 + 4, &_1011);
        square_multiply(&mut y,   2 + 4, &_1011);
        square_multiply(&mut y,   6 + 4, &_1001);
        square_multiply(&mut y,   2 + 2, &_11);
        square_multiply(&mut y,   3 + 2, &_11);
        square_multiply(&mut y,   3 + 2, &_11);
        square_multiply(&mut y,   1 + 4, &_1001);
        square_multiply(&mut y,   1 + 3, &_111);
        square_multiply(&mut y,   2 + 4, &_1111);
        square_multiply(&mut y,   1 + 4, &_1011);
        square_multiply(&mut y,       3, &_101);
        square_multiply(&mut y,   2 + 4, &_1111);
        square_multiply(&mut y,       3, &_101);
        square_multiply(&mut y,   1 + 2, &_11);

        y
    }

    /// Inverts an UnpackedScalar not in Montgomery form.
    pub fn invert(&self) -> UnpackedScalar {
        self.to_montgomery().montgomery_invert().from_montgomery()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use constants;

    /// x = 2238329342913194256032495932344128051776374960164957527413114840482143558222
    pub static X: Scalar = Scalar{
        bytes: [
            0x4e, 0x5a, 0xb4, 0x34, 0x5d, 0x47, 0x08, 0x84,
            0x59, 0x13, 0xb4, 0x64, 0x1b, 0xc2, 0x7d, 0x52,
            0x52, 0xa5, 0x85, 0x10, 0x1b, 0xcc, 0x42, 0x44,
            0xd4, 0x49, 0xf4, 0xa8, 0x79, 0xd9, 0xf2, 0x04,
        ],
    };
    /// 1/x = 6859937278830797291664592131120606308688036382723378951768035303146619657244
    pub static XINV: Scalar = Scalar{
        bytes: [
            0x1c, 0xdc, 0x17, 0xfc, 0xe0, 0xe9, 0xa5, 0xbb,
            0xd9, 0x24, 0x7e, 0x56, 0xbb, 0x01, 0x63, 0x47,
            0xbb, 0xba, 0x31, 0xed, 0xd5, 0xa9, 0xbb, 0x96,
            0xd5, 0x0b, 0xcd, 0x7a, 0x3f, 0x96, 0x2a, 0x0f,
        ],
    };
    /// y = 2592331292931086675770238855846338635550719849568364935475441891787804997264
    pub static Y: Scalar = Scalar{
        bytes: [
            0x90, 0x76, 0x33, 0xfe, 0x1c, 0x4b, 0x66, 0xa4,
            0xa2, 0x8d, 0x2d, 0xd7, 0x67, 0x83, 0x86, 0xc3,
            0x53, 0xd0, 0xde, 0x54, 0x55, 0xd4, 0xfc, 0x9d,
            0xe8, 0xef, 0x7a, 0xc3, 0x1f, 0x35, 0xbb, 0x05,
        ],
    };

    /// x*y = 5690045403673944803228348699031245560686958845067437804563560795922180092780
    static X_TIMES_Y: Scalar = Scalar{
        bytes: [
            0x6c, 0x33, 0x74, 0xa1, 0x89, 0x4f, 0x62, 0x21,
            0x0a, 0xaa, 0x2f, 0xe1, 0x86, 0xa6, 0xf9, 0x2c,
            0xe0, 0xaa, 0x75, 0xc2, 0x77, 0x95, 0x81, 0xc2,
            0x95, 0xfc, 0x08, 0x17, 0x9a, 0x73, 0x94, 0x0c,
        ],
    };

    /// sage: l = 2^252 + 27742317777372353535851937790883648493
    /// sage: big = 2^256 - 1
    /// sage: repr((big % l).digits(256))
    static CANONICAL_2_256_MINUS_1: Scalar = Scalar{
        bytes: [
              28, 149, 152, 141, 116,  49, 236, 214,
             112, 207, 125, 115, 244,  91, 239, 198,
             254, 255, 255, 255, 255, 255, 255, 255,
             255, 255, 255, 255, 255, 255, 255,  15,
        ],
    };

    static A_SCALAR: Scalar = Scalar{
        bytes: [
            0x1a, 0x0e, 0x97, 0x8a, 0x90, 0xf6, 0x62, 0x2d,
            0x37, 0x47, 0x02, 0x3f, 0x8a, 0xd8, 0x26, 0x4d,
            0xa7, 0x58, 0xaa, 0x1b, 0x88, 0xe0, 0x40, 0xd1,
            0x58, 0x9e, 0x7b, 0x7f, 0x23, 0x76, 0xef, 0x09,
        ],
    };

    static A_NAF: [i8; 256] =
        [0,13,0,0,0,0,0,0,0,7,0,0,0,0,0,0,-9,0,0,0,0,-11,0,0,0,0,3,0,0,0,0,1,
         0,0,0,0,9,0,0,0,0,-5,0,0,0,0,0,0,3,0,0,0,0,11,0,0,0,0,11,0,0,0,0,0,
         -9,0,0,0,0,0,-3,0,0,0,0,9,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,9,0,
         0,0,0,-15,0,0,0,0,-7,0,0,0,0,-9,0,0,0,0,0,5,0,0,0,0,13,0,0,0,0,0,-3,0,
         0,0,0,-11,0,0,0,0,-7,0,0,0,0,-13,0,0,0,0,11,0,0,0,0,-9,0,0,0,0,0,1,0,0,
         0,0,0,-15,0,0,0,0,1,0,0,0,0,7,0,0,0,0,0,0,0,0,5,0,0,0,0,0,13,0,0,0,
         0,0,0,11,0,0,0,0,0,15,0,0,0,0,0,-9,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,7,
         0,0,0,0,0,-15,0,0,0,0,0,15,0,0,0,0,15,0,0,0,0,15,0,0,0,0,0,1,0,0,0,0];

    static LARGEST_ED25519_S: Scalar = Scalar {
        bytes: [
            0xf8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
        ],
    };

    static CANONICAL_LARGEST_ED25519_S_PLUS_ONE: Scalar = Scalar {
        bytes: [
            0x7e, 0x34, 0x47, 0x75, 0x47, 0x4a, 0x7f, 0x97,
            0x23, 0xb6, 0x3a, 0x8b, 0xe9, 0x2a, 0xe7, 0x6d,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
        ],
    };

    static CANONICAL_LARGEST_ED25519_S_MINUS_ONE: Scalar = Scalar {
        bytes: [
            0x7c, 0x34, 0x47, 0x75, 0x47, 0x4a, 0x7f, 0x97,
            0x23, 0xb6, 0x3a, 0x8b, 0xe9, 0x2a, 0xe7, 0x6d,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
        ],
    };

    #[test]
    fn fuzzer_testcase_reduction() {
        // LE bytes of 24519928653854221733733552434404946937899825954937634815
        let a_bytes = [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0];
        // LE bytes of 4975441334397345751130612518500927154628011511324180036903450236863266160640
        let b_bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 210, 210, 210, 255, 255, 255, 255, 10];
        // LE bytes of 6432735165214683820902750800207468552549813371247423777071615116673864412038
        let c_bytes = [134, 171, 119, 216, 180, 128, 178, 62, 171, 132, 32, 62, 34, 119, 104, 193, 47, 215, 181, 250, 14, 207, 172, 93, 75, 207, 211, 103, 144, 204, 56, 14];

        let a = Scalar::from_bytes_mod_order(a_bytes);
        let b = Scalar::from_bytes_mod_order(b_bytes);
        let c = Scalar::from_bytes_mod_order(c_bytes);

        let mut tmp = [0u8; 64];

        // also_a = (a mod l)
        tmp[0..32].copy_from_slice(&a_bytes[..]);
        let also_a = Scalar::from_bytes_mod_order_wide(&tmp);

        // also_b = (b mod l)
        tmp[0..32].copy_from_slice(&b_bytes[..]);
        let also_b = Scalar::from_bytes_mod_order_wide(&tmp);

        let expected_c = &a * &b;
        let also_expected_c = &also_a * &also_b;

        assert_eq!(c, expected_c);
        assert_eq!(c, also_expected_c);
    }

    #[test]
    fn non_adjacent_form_test_vector() {
        let naf = A_SCALAR.non_adjacent_form(5);
        for i in 0..256 {
            assert_eq!(naf[i], A_NAF[i]);
        }
    }

    fn non_adjacent_form_iter(w: usize, x: &Scalar) {
        let naf = x.non_adjacent_form(w);

        // Reconstruct the scalar from the computed NAF
        let mut y = Scalar::zero();
        for i in (0..256).rev() {
            y += y;
            let digit = if naf[i] < 0 {
                -Scalar::from((-naf[i]) as u64)
            } else {
                Scalar::from(naf[i] as u64)
            };
            y += digit;
        }

        assert_eq!(*x, y);
    }

    #[test]
    fn non_adjacent_form_random() {
        let mut rng = rand::thread_rng();
        for _ in 0..1_000 {
            let x = Scalar::random(&mut rng);
            for w in &[5, 6, 7, 8] {
                non_adjacent_form_iter(*w, &x);
            }
        }
    }

    #[test]
    fn from_u64() {
        let val: u64 = 0xdeadbeefdeadbeef;
        let s = Scalar::from(val);
        assert_eq!(s[7], 0xde);
        assert_eq!(s[6], 0xad);
        assert_eq!(s[5], 0xbe);
        assert_eq!(s[4], 0xef);
        assert_eq!(s[3], 0xde);
        assert_eq!(s[2], 0xad);
        assert_eq!(s[1], 0xbe);
        assert_eq!(s[0], 0xef);
    }

    #[test]
    fn scalar_mul_by_one() {
        let test_scalar = &X * &Scalar::one();
        for i in 0..32 {
            assert!(test_scalar[i] == X[i]);
        }
    }

    #[test]
    fn add_reduces() {
        // Check that the addition works
        assert_eq!(
            (LARGEST_ED25519_S + Scalar::one()).reduce(),
            CANONICAL_LARGEST_ED25519_S_PLUS_ONE
        );
        // Check that the addition reduces
        assert_eq!(
            LARGEST_ED25519_S + Scalar::one(),
            CANONICAL_LARGEST_ED25519_S_PLUS_ONE
        );
    }

    #[test]
    fn sub_reduces() {
        // Check that the subtraction works
        assert_eq!(
            (LARGEST_ED25519_S - Scalar::one()).reduce(),
            CANONICAL_LARGEST_ED25519_S_MINUS_ONE
        );
        // Check that the subtraction reduces
        assert_eq!(
            LARGEST_ED25519_S - Scalar::one(),
            CANONICAL_LARGEST_ED25519_S_MINUS_ONE
        );
    }

    #[test]
    fn quarkslab_scalar_overflow_does_not_occur() {
        // Check that manually-constructing large Scalars with
        // from_bits cannot produce incorrect results.
        //
        // The from_bits function is required to implement X/Ed25519,
        // while all other methods of constructing a Scalar produce
        // reduced Scalars.  However, this "invariant loophole" allows
        // constructing large scalars which are not reduced mod l.
        //
        // This issue was discovered independently by both Jack
        // "str4d" Grigg (issue #238), who noted that reduction was
        // not performed on addition, and Laurent Grémy & Nicolas
        // Surbayrole of Quarkslab, who noted that it was possible to
        // cause an overflow and compute incorrect results.
        //
        // This test is adapted from the one suggested by Quarkslab.

        let large_bytes = [
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
        ];

        let a = Scalar::from_bytes_mod_order(large_bytes);
        let b = Scalar::from_bits(large_bytes);

        assert_eq!(a, b.reduce());

        let a_3 = a + a + a;
        let b_3 = b + b + b;

        assert_eq!(a_3, b_3);

        let neg_a = -a;
        let neg_b = -b;

        assert_eq!(neg_a, neg_b);

        let minus_a_3 = Scalar::zero() - a - a - a;
        let minus_b_3 = Scalar::zero() - b - b - b;

        assert_eq!(minus_a_3, minus_b_3);
        assert_eq!(minus_a_3, -a_3);
        assert_eq!(minus_b_3, -b_3);
    }

    #[test]
    fn impl_add() {
        let two = Scalar::from(2u64);
        let one = Scalar::one();
        let should_be_two = &one + &one;
        assert_eq!(should_be_two, two);
    }

    #[allow(non_snake_case)]
    #[test]
    fn impl_mul() {
        let should_be_X_times_Y = &X * &Y;
        assert_eq!(should_be_X_times_Y, X_TIMES_Y);
    }

    #[allow(non_snake_case)]
    #[test]
    fn impl_product() {
        // Test that product works for non-empty iterators
        let X_Y_vector = vec![X, Y];
        let should_be_X_times_Y: Scalar = X_Y_vector.iter().product();
        assert_eq!(should_be_X_times_Y, X_TIMES_Y);

        // Test that product works for the empty iterator
        let one = Scalar::one();
        let empty_vector = vec![];
        let should_be_one: Scalar = empty_vector.iter().product();
        assert_eq!(should_be_one, one);

        // Test that product works for iterators where Item = Scalar
        let xs = [Scalar::from(2u64); 10];
        let ys = [Scalar::from(3u64); 10];
        // now zs is an iterator with Item = Scalar
        let zs = xs.iter().zip(ys.iter()).map(|(x,y)| x * y);

        let x_prod: Scalar = xs.iter().product();
        let y_prod: Scalar = ys.iter().product();
        let z_prod: Scalar = zs.product();

        assert_eq!(x_prod, Scalar::from(1024u64));
        assert_eq!(y_prod, Scalar::from(59049u64));
        assert_eq!(z_prod, Scalar::from(60466176u64));
        assert_eq!(x_prod * y_prod, z_prod);

    }

    #[test]
    fn impl_sum() {

        // Test that sum works for non-empty iterators
        let two = Scalar::from(2u64);
        let one_vector = vec![Scalar::one(), Scalar::one()];
        let should_be_two: Scalar = one_vector.iter().sum();
        assert_eq!(should_be_two, two);

        // Test that sum works for the empty iterator
        let zero = Scalar::zero();
        let empty_vector = vec![];
        let should_be_zero: Scalar = empty_vector.iter().sum();
        assert_eq!(should_be_zero, zero);

        // Test that sum works for owned types
        let xs = [Scalar::from(1u64); 10];
        let ys = [Scalar::from(2u64); 10];
        // now zs is an iterator with Item = Scalar
        let zs = xs.iter().zip(ys.iter()).map(|(x,y)| x + y);

        let x_sum: Scalar = xs.iter().sum();
        let y_sum: Scalar = ys.iter().sum();
        let z_sum: Scalar = zs.sum();

        assert_eq!(x_sum, Scalar::from(10u64));
        assert_eq!(y_sum, Scalar::from(20u64));
        assert_eq!(z_sum, Scalar::from(30u64));
        assert_eq!(x_sum + y_sum, z_sum);
    }

    #[test]
    fn square() {
        let expected = &X * &X;
        let actual = X.unpack().square().pack();
        for i in 0..32 {
            assert!(expected[i] == actual[i]);
        }
    }

    #[test]
    fn reduce() {
        let biggest = Scalar::from_bytes_mod_order([0xff; 32]);
        assert_eq!(biggest, CANONICAL_2_256_MINUS_1);
    }

    #[test]
    fn from_bytes_mod_order_wide() {
        let mut bignum = [0u8; 64];
        // set bignum = x + 2^256x
        for i in 0..32 {
            bignum[   i] = X[i];
            bignum[32+i] = X[i];
        }
        // 3958878930004874126169954872055634648693766179881526445624823978500314864344
        // = x + 2^256x (mod l)
        let reduced = Scalar{
            bytes: [
                216, 154, 179, 139, 210, 121,   2,  71,
                 69,  99, 158, 216,  23, 173,  63, 100,
                204,   0,  91,  50, 219, 153,  57, 249,
                 28,  82,  31, 197, 100, 165, 192,   8,
            ],
        };
        let test_red = Scalar::from_bytes_mod_order_wide(&bignum);
        for i in 0..32 {
            assert!(test_red[i] == reduced[i]);
        }
    }

    #[allow(non_snake_case)]
    #[test]
    fn invert() {
        let inv_X = X.invert();
        assert_eq!(inv_X, XINV);
        let should_be_one = &inv_X * &X;
        assert_eq!(should_be_one, Scalar::one());
    }

    // Negating a scalar twice should result in the original scalar.
    #[allow(non_snake_case)]
    #[test]
    fn neg_twice_is_identity() {
        let negative_X = -&X;
        let should_be_X = -&negative_X;

        assert_eq!(should_be_X, X);
    }

    #[test]
    fn to_bytes_from_bytes_roundtrips() {
        let unpacked = X.unpack();
        let bytes = unpacked.to_bytes();
        let should_be_unpacked = UnpackedScalar::from_bytes(&bytes);

        assert_eq!(should_be_unpacked.0, unpacked.0);
    }

    #[test]
    fn montgomery_reduce_matches_from_bytes_mod_order_wide() {
        let mut bignum = [0u8; 64];

        // set bignum = x + 2^256x
        for i in 0..32 {
            bignum[   i] = X[i];
            bignum[32+i] = X[i];
        }
        // x + 2^256x (mod l)
        //         = 3958878930004874126169954872055634648693766179881526445624823978500314864344
        let expected = Scalar{
            bytes: [
                216, 154, 179, 139, 210, 121,   2,  71,
                 69,  99, 158, 216,  23, 173,  63, 100,
                204,   0,  91,  50, 219, 153,  57, 249,
                 28,  82,  31, 197, 100, 165, 192,   8
            ],
        };
        let reduced = Scalar::from_bytes_mod_order_wide(&bignum);

        // The reduced scalar should match the expected
        assert_eq!(reduced.bytes, expected.bytes);

        //  (x + 2^256x) * R
        let interim = UnpackedScalar::mul_internal(&UnpackedScalar::from_bytes_wide(&bignum),
                                                   &constants::R);
        // ((x + 2^256x) * R) / R  (mod l)
        let montgomery_reduced = UnpackedScalar::montgomery_reduce(&interim);

        // The Montgomery reduced scalar should match the reduced one, as well as the expected
        assert_eq!(montgomery_reduced.0, reduced.unpack().0);
        assert_eq!(montgomery_reduced.0, expected.unpack().0)
    }

    #[test]
    fn canonical_decoding() {
        // canonical encoding of 1667457891
        let canonical_bytes = [99, 99, 99, 99, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,];

        // encoding of
        //   7265385991361016183439748078976496179028704920197054998554201349516117938192
        // = 28380414028753969466561515933501938171588560817147392552250411230663687203 (mod l)
        // non_canonical because unreduced mod l
        let non_canonical_bytes_because_unreduced = [16; 32];

        // encoding with high bit set, to check that the parser isn't pre-masking the high bit
        let non_canonical_bytes_because_highbit = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128];

        assert!( Scalar::from_canonical_bytes(canonical_bytes).is_some() );
        assert!( Scalar::from_canonical_bytes(non_canonical_bytes_because_unreduced).is_none() );
        assert!( Scalar::from_canonical_bytes(non_canonical_bytes_because_highbit).is_none() );
    }

    #[test]
    #[cfg(feature = "serde")]
    fn serde_bincode_scalar_roundtrip() {
        use bincode;
        let encoded = bincode::serialize(&X).unwrap();
        let parsed: Scalar = bincode::deserialize(&encoded).unwrap();
        assert_eq!(parsed, X);

        // Check that the encoding is 32 bytes exactly
        assert_eq!(encoded.len(), 32);

        // Check that the encoding itself matches the usual one
        assert_eq!(
            X,
            bincode::deserialize(X.as_bytes()).unwrap(),
        );
    }

    #[cfg(debug_assertions)]
    #[test]
    #[should_panic]
    fn batch_invert_with_a_zero_input_panics() {
        let mut xs = vec![Scalar::one(); 16];
        xs[3] = Scalar::zero();
        // This should panic in debug mode.
        Scalar::batch_invert(&mut xs);
    }

    #[test]
    fn batch_invert_empty() {
        assert_eq!(Scalar::one(), Scalar::batch_invert(&mut []));
    }

    #[test]
    fn batch_invert_consistency() {
        let mut x = Scalar::from(1u64);
        let mut v1: Vec<_> = (0..16).map(|_| {let tmp = x; x = x + x; tmp}).collect();
        let v2 = v1.clone();

        let expected: Scalar = v1.iter().product();
        let expected = expected.invert();
        let ret = Scalar::batch_invert(&mut v1);
        assert_eq!(ret, expected);

        for (a, b) in v1.iter().zip(v2.iter()) {
            assert_eq!(a * b, Scalar::one());
        }
    }

    fn test_pippenger_radix_iter(scalar: Scalar, w: usize) {
        let digits_count = Scalar::to_radix_2w_size_hint(w);
        let digits = scalar.to_radix_2w(w);

        let radix = Scalar::from((1<<w) as u64);
        let mut term = Scalar::one();
        let mut recovered_scalar = Scalar::zero();
        for digit in &digits[0..digits_count] {
            let digit = *digit;
            if digit != 0 {
                let sdigit = if digit < 0 {
                    -Scalar::from((-(digit as i64)) as u64)
                } else {
                    Scalar::from(digit as u64)
                };
                recovered_scalar += term * sdigit;
            }
            term *= radix;
        }
        // When the input is unreduced, we may only recover the scalar mod l.
        assert_eq!(recovered_scalar, scalar.reduce());
    }

    #[test]
    fn test_pippenger_radix() {
        use core::iter;
        // For each valid radix it tests that 1000 random-ish scalars can be restored
        // from the produced representation precisely.
        let cases = (2..100)
            .map(|s| Scalar::from(s as u64).invert())
            // The largest unreduced scalar, s = 2^255-1
            .chain(iter::once(Scalar::from_bits([0xff; 32])));

        for scalar in cases {
            test_pippenger_radix_iter(scalar, 6);
            test_pippenger_radix_iter(scalar, 7);
            test_pippenger_radix_iter(scalar, 8);
        }
    }
}