Files
arrayref
arrayvec
bamboo_rs_core
blake2b_simd
block_buffer
byteorder
cfg_if
constant_time_eq
cpufeatures
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
curve25519_dalek
digest
doc_comment
ed25519
ed25519_dalek
either
generic_array
getrandom
hex
keccak
lazy_static
libc
lipmaa_link
memoffset
merlin
num_cpus
opaque_debug
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rayon
rayon_core
scopeguard
serde
serde_bytes
serde_derive
sha2
signature
snafu
snafu_derive
static_assertions
subtle
syn
synstructure
typenum
unicode_xid
varu64
yamf_hash
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Code for fixed- and sliding-window functionality

#![allow(non_snake_case)]

use core::fmt::Debug;

use subtle::ConditionallyNegatable;
use subtle::ConditionallySelectable;
use subtle::ConstantTimeEq;
use subtle::Choice;

use traits::Identity;

use edwards::EdwardsPoint;
use backend::serial::curve_models::ProjectiveNielsPoint;
use backend::serial::curve_models::AffineNielsPoint;

use zeroize::Zeroize;

macro_rules! impl_lookup_table {
    (Name = $name:ident, Size = $size:expr, SizeNeg = $neg:expr, SizeRange = $range:expr, ConversionRange = $conv_range:expr) => {

/// A lookup table of precomputed multiples of a point \\(P\\), used to
/// compute \\( xP \\) for \\( -8 \leq x \leq 8 \\).
///
/// The computation of \\( xP \\) is done in constant time by the `select` function.
///
/// Since `LookupTable` does not implement `Index`, it's more difficult
/// to accidentally use the table directly.  Unfortunately the table is
/// only `pub(crate)` so that we can write hardcoded constants, so it's
/// still technically possible.  It would be nice to prevent direct
/// access to the table.
#[derive(Copy, Clone)]
pub struct $name<T>(pub(crate) [T; $size]);

impl<T> $name<T>
where
    T: Identity + ConditionallySelectable + ConditionallyNegatable,
{
    /// Given \\(-8 \leq x \leq 8\\), return \\(xP\\) in constant time.
    pub fn select(&self, x: i8) -> T {
        debug_assert!(x >= $neg);
        debug_assert!(x as i16 <= $size as i16); // XXX We have to convert to i16s here for the radix-256 case.. this is wrong.

        // Compute xabs = |x|
        let xmask = x  as i16 >> 7;
        let xabs = (x as i16 + xmask) ^ xmask;

        // Set t = 0 * P = identity
        let mut t = T::identity();
        for j in $range {
            // Copy `points[j-1] == j*P` onto `t` in constant time if `|x| == j`.
            let c = (xabs as u16).ct_eq(&(j as u16));
            t.conditional_assign(&self.0[j - 1], c);
        }
        // Now t == |x| * P.

        let neg_mask = Choice::from((xmask & 1) as u8);
        t.conditional_negate(neg_mask);
        // Now t == x * P.

        t
    }
}

impl<T: Copy + Default> Default for $name<T> {
    fn default() -> $name<T> {
        $name([T::default(); $size])
    }
}

impl<T: Debug> Debug for $name<T> {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "{:?}(", stringify!($name))?;

        for x in self.0.iter() {
            write!(f, "{:?}", x)?;
        }

        write!(f, ")")
    }
}

impl<'a> From<&'a EdwardsPoint> for $name<ProjectiveNielsPoint> {
    fn from(P: &'a EdwardsPoint) -> Self {
        let mut points = [P.to_projective_niels(); $size];
        for j in $conv_range {
            points[j + 1] = (P + &points[j]).to_extended().to_projective_niels();
        }
        $name(points)
    }
}

impl<'a> From<&'a EdwardsPoint> for $name<AffineNielsPoint> {
    fn from(P: &'a EdwardsPoint) -> Self {
        let mut points = [P.to_affine_niels(); $size];
        // XXX batch inversion would be good if perf mattered here
        for j in $conv_range {
            points[j + 1] = (P + &points[j]).to_extended().to_affine_niels()
        }
        $name(points)
    }
}

impl<T> Zeroize for $name<T>
where
    T: Copy + Default + Zeroize
{
    fn zeroize(&mut self) {
        for x in self.0.iter_mut() {
            x.zeroize();
        }
    }
}

}}  // End macro_rules! impl_lookup_table

// The first one has to be named "LookupTable" because it's used as a constructor for consts.
impl_lookup_table! {Name = LookupTable,         Size =   8, SizeNeg =   -8, SizeRange = 1 ..   9, ConversionRange = 0 ..   7} // radix-16
impl_lookup_table! {Name = LookupTableRadix32,  Size =  16, SizeNeg =  -16, SizeRange = 1 ..  17, ConversionRange = 0 ..  15} // radix-32
impl_lookup_table! {Name = LookupTableRadix64,  Size =  32, SizeNeg =  -32, SizeRange = 1 ..  33, ConversionRange = 0 ..  31} // radix-64
impl_lookup_table! {Name = LookupTableRadix128, Size =  64, SizeNeg =  -64, SizeRange = 1 ..  65, ConversionRange = 0 ..  63} // radix-128
impl_lookup_table! {Name = LookupTableRadix256, Size = 128, SizeNeg = -128, SizeRange = 1 .. 129, ConversionRange = 0 .. 127} // radix-256

// For homogeneity we then alias it to "LookupTableRadix16".
pub type LookupTableRadix16<T> = LookupTable<T>;

/// Holds odd multiples 1A, 3A, ..., 15A of a point A.
#[derive(Copy, Clone)]
pub(crate) struct NafLookupTable5<T>(pub(crate) [T; 8]);

impl<T: Copy> NafLookupTable5<T> {
    /// Given public, odd \\( x \\) with \\( 0 < x < 2^4 \\), return \\(xA\\).
    pub fn select(&self, x: usize) -> T {
        debug_assert_eq!(x & 1, 1);
        debug_assert!(x < 16);

        self.0[x / 2]
    }
}

impl<T: Debug> Debug for NafLookupTable5<T> {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "NafLookupTable5({:?})", self.0)
    }
}

impl<'a> From<&'a EdwardsPoint> for NafLookupTable5<ProjectiveNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.to_projective_niels(); 8];
        let A2 = A.double();
        for i in 0..7 {
            Ai[i + 1] = (&A2 + &Ai[i]).to_extended().to_projective_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A]
        NafLookupTable5(Ai)
    }
}

impl<'a> From<&'a EdwardsPoint> for NafLookupTable5<AffineNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.to_affine_niels(); 8];
        let A2 = A.double();
        for i in 0..7 {
            Ai[i + 1] = (&A2 + &Ai[i]).to_extended().to_affine_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A]
        NafLookupTable5(Ai)
    }
}

/// Holds stuff up to 8.
#[derive(Copy, Clone)]
pub(crate) struct NafLookupTable8<T>(pub(crate) [T; 64]);

impl<T: Copy> NafLookupTable8<T> {
    pub fn select(&self, x: usize) -> T {
        debug_assert_eq!(x & 1, 1);
        debug_assert!(x < 128);

        self.0[x / 2]
    }
}

impl<T: Debug> Debug for NafLookupTable8<T> {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "NafLookupTable8([\n")?;
        for i in 0..64 {
            write!(f, "\t{:?},\n", &self.0[i])?;
        }
        write!(f, "])")
    }
}

impl<'a> From<&'a EdwardsPoint> for NafLookupTable8<ProjectiveNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.to_projective_niels(); 64];
        let A2 = A.double();
        for i in 0..63 {
            Ai[i + 1] = (&A2 + &Ai[i]).to_extended().to_projective_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A, ..., 127A]
        NafLookupTable8(Ai)
    }
}

impl<'a> From<&'a EdwardsPoint> for NafLookupTable8<AffineNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.to_affine_niels(); 64];
        let A2 = A.double();
        for i in 0..63 {
            Ai[i + 1] = (&A2 + &Ai[i]).to_extended().to_affine_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A, ..., 127A]
        NafLookupTable8(Ai)
    }
}