1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
// -*- mode: rust; -*-
//
// This file is part of ed25519-dalek.
// Copyright (c) 2017-2019 isis lovecruft
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>

//! Batch signature verification.

#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(all(not(feature = "alloc"), feature = "std"))]
use std::vec::Vec;

use core::convert::TryFrom;
use core::iter::once;

use curve25519_dalek::constants;
use curve25519_dalek::edwards::EdwardsPoint;
use curve25519_dalek::scalar::Scalar;
use curve25519_dalek::traits::IsIdentity;
use curve25519_dalek::traits::VartimeMultiscalarMul;

pub use curve25519_dalek::digest::Digest;

use merlin::Transcript;

use rand::Rng;
#[cfg(all(feature = "batch", not(feature = "batch_deterministic")))]
use rand::thread_rng;
#[cfg(all(not(feature = "batch"), feature = "batch_deterministic"))]
use rand_core;

use sha2::Sha512;

use crate::errors::InternalError;
use crate::errors::SignatureError;
use crate::public::PublicKey;
use crate::signature::InternalSignature;

trait BatchTranscript {
    fn append_scalars(&mut self, scalars: &Vec<Scalar>);
    fn append_message_lengths(&mut self, message_lengths: &Vec<usize>);
}

impl BatchTranscript for Transcript {
    /// Append some `scalars` to this batch verification sigma protocol transcript.
    ///
    /// For ed25519 batch verification, we include the following as scalars:
    ///
    /// * All of the computed `H(R||A||M)`s to the protocol transcript, and
    /// * All of the `s` components of each signature.
    ///
    /// Each is also prefixed with their index in the vector.
    fn append_scalars(&mut self, scalars: &Vec<Scalar>) {
        for (i, scalar) in scalars.iter().enumerate() {
            self.append_u64(b"", i as u64);
            self.append_message(b"hram", scalar.as_bytes());
        }
    }

    /// Append the lengths of the messages into the transcript.
    ///
    /// This is done out of an (potential over-)abundance of caution, to guard
    /// against the unlikely event of collisions.  However, a nicer way to do
    /// this would be to append the message length before the message, but this
    /// is messy w.r.t. the calculations of the `H(R||A||M)`s above.
    fn append_message_lengths(&mut self, message_lengths: &Vec<usize>) {
        for (i, len) in message_lengths.iter().enumerate() {
            self.append_u64(b"", i as u64);
            self.append_u64(b"mlen", *len as u64);
        }
    }
}

/// An implementation of `rand_core::RngCore` which does nothing, to provide
/// purely deterministic transcript-based nonces, rather than synthetically
/// random nonces.
#[cfg(all(not(feature = "batch"), feature = "batch_deterministic"))]
struct ZeroRng {}

#[cfg(all(not(feature = "batch"), feature = "batch_deterministic"))]
impl rand_core::RngCore for ZeroRng {
    fn next_u32(&mut self) -> u32 {
        rand_core::impls::next_u32_via_fill(self)
    }

    fn next_u64(&mut self) -> u64 {
        rand_core::impls::next_u64_via_fill(self)
    }

    /// A no-op function which leaves the destination bytes for randomness unchanged.
    ///
    /// In this case, the internal merlin code is initialising the destination
    /// by doing `[0u8; …]`, which means that when we call
    /// `merlin::TranscriptRngBuilder.finalize()`, rather than rekeying the
    /// STROBE state based on external randomness, we're doing an
    /// `ENC_{state}(00000000000000000000000000000000)` operation, which is
    /// identical to the STROBE `MAC` operation.
    fn fill_bytes(&mut self, _dest: &mut [u8]) { }

    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
        self.fill_bytes(dest);
        Ok(())
    }
}

#[cfg(all(not(feature = "batch"), feature = "batch_deterministic"))]
impl rand_core::CryptoRng for ZeroRng {}

#[cfg(all(not(feature = "batch"), feature = "batch_deterministic"))]
fn zero_rng() -> ZeroRng {
    ZeroRng {}
}

/// Verify a batch of `signatures` on `messages` with their respective `public_keys`.
///
/// # Inputs
///
/// * `messages` is a slice of byte slices, one per signed message.
/// * `signatures` is a slice of `Signature`s.
/// * `public_keys` is a slice of `PublicKey`s.
///
/// # Returns
///
/// * A `Result` whose `Ok` value is an emtpy tuple and whose `Err` value is a
///   `SignatureError` containing a description of the internal error which
///   occured.
///
/// # Notes on Nonce Generation & Malleability
///
/// ## On Synthetic Nonces
///
/// This library defaults to using what is called "synthetic" nonces, which
/// means that a mixture of deterministic (per any unique set of inputs to this
/// function) data and system randomness is used to seed the CSPRNG for nonce
/// generation.  For more of the background theory on why many cryptographers
/// currently believe this to be superior to either purely deterministic
/// generation or purely relying on the system's randomness, see [this section
/// of the Merlin design](https://merlin.cool/transcript/rng.html) by Henry de
/// Valence, isis lovecruft, and Oleg Andreev, as well as Trevor Perrin's
/// [designs for generalised
/// EdDSA](https://moderncrypto.org/mail-archive/curves/2017/000925.html).
///
/// ## On Deterministic Nonces
///
/// In order to be ammenable to protocols which require stricter third-party
/// auditability trails, such as in some financial cryptographic settings, this
/// library also supports a `--features=batch_deterministic` setting, where the
/// nonces for batch signature verification are derived purely from the inputs
/// to this function themselves.
///
/// **This is not recommended for use unless you have several cryptographers on
///   staff who can advise you in its usage and all the horrible, terrible,
///   awful ways it can go horribly, terribly, awfully wrong.**
///
/// In any sigma protocol it is wise to include as much context pertaining
/// to the public state in the protocol as possible, to avoid malleability
/// attacks where an adversary alters publics in an algebraic manner that
/// manages to satisfy the equations for the protocol in question.
///
/// For ed25519 batch verification (both with synthetic and deterministic nonce
/// generation), we include the following as scalars in the protocol transcript:
///
/// * All of the computed `H(R||A||M)`s to the protocol transcript, and
/// * All of the `s` components of each signature.
///
/// Each is also prefixed with their index in the vector.
///
/// The former, while not quite as elegant as adding the `R`s, `A`s, and
/// `M`s separately, saves us a bit of context hashing since the
/// `H(R||A||M)`s need to be computed for the verification equation anyway.
///
/// The latter prevents a malleability attack only found in deterministic batch
/// signature verification (i.e. only when compiling `ed25519-dalek` with
/// `--features batch_deterministic`) wherein an adversary, without access
/// to the signing key(s), can take any valid signature, `(s,R)`, and swap
/// `s` with `s' = -z1`.  This doesn't contitute a signature forgery, merely
/// a vulnerability, as the resulting signature will not pass single
/// signature verification.  (Thanks to Github users @real_or_random and
/// @jonasnick for pointing out this malleability issue.)
///
/// For an additional way in which signatures can be made to probablistically
/// falsely "pass" the synthethic batch verification equation *for the same
/// inputs*, but *only some crafted inputs* will pass the deterministic batch
/// single, and neither of these will ever pass single signature verification,
/// see the documentation for [`PublicKey.validate()`].
///
/// # Examples
///
/// ```
/// extern crate ed25519_dalek;
/// extern crate rand;
///
/// use ed25519_dalek::verify_batch;
/// use ed25519_dalek::Keypair;
/// use ed25519_dalek::PublicKey;
/// use ed25519_dalek::Signer;
/// use ed25519_dalek::Signature;
/// use rand::rngs::OsRng;
///
/// # fn main() {
/// let mut csprng = OsRng{};
/// let keypairs: Vec<Keypair> = (0..64).map(|_| Keypair::generate(&mut csprng)).collect();
/// let msg: &[u8] = b"They're good dogs Brant";
/// let messages: Vec<&[u8]> = (0..64).map(|_| msg).collect();
/// let signatures:  Vec<Signature> = keypairs.iter().map(|key| key.sign(&msg)).collect();
/// let public_keys: Vec<PublicKey> = keypairs.iter().map(|key| key.public).collect();
///
/// let result = verify_batch(&messages[..], &signatures[..], &public_keys[..]);
/// assert!(result.is_ok());
/// # }
/// ```
#[cfg(all(any(feature = "batch", feature = "batch_deterministic"),
          any(feature = "alloc", feature = "std")))]
#[allow(non_snake_case)]
pub fn verify_batch(
    messages: &[&[u8]],
    signatures: &[ed25519::Signature],
    public_keys: &[PublicKey],
) -> Result<(), SignatureError>
{
    // Return an Error if any of the vectors were not the same size as the others.
    if signatures.len() != messages.len() ||
        signatures.len() != public_keys.len() ||
        public_keys.len() != messages.len() {
        return Err(InternalError::ArrayLengthError{
            name_a: "signatures", length_a: signatures.len(),
            name_b: "messages", length_b: messages.len(),
            name_c: "public_keys", length_c: public_keys.len(),
        }.into());
    }

    // Convert all signatures to `InternalSignature`
    let signatures = signatures
        .iter()
        .map(InternalSignature::try_from)
        .collect::<Result<Vec<_>, _>>()?;

    // Compute H(R || A || M) for each (signature, public_key, message) triplet
    let hrams: Vec<Scalar> = (0..signatures.len()).map(|i| {
        let mut h: Sha512 = Sha512::default();
        h.update(signatures[i].R.as_bytes());
        h.update(public_keys[i].as_bytes());
        h.update(&messages[i]);
        Scalar::from_hash(h)
    }).collect();

    // Collect the message lengths and the scalar portions of the signatures,
    // and add them into the transcript.
    let message_lengths: Vec<usize> = messages.iter().map(|i| i.len()).collect();
    let scalars: Vec<Scalar> = signatures.iter().map(|i| i.s).collect();

    // Build a PRNG based on a transcript of the H(R || A || M)s seen thus far.
    // This provides synthethic randomness in the default configuration, and
    // purely deterministic in the case of compiling with the
    // "batch_deterministic" feature.
    let mut transcript: Transcript = Transcript::new(b"ed25519 batch verification");

    transcript.append_scalars(&hrams);
    transcript.append_message_lengths(&message_lengths);
    transcript.append_scalars(&scalars);

    #[cfg(all(feature = "batch", not(feature = "batch_deterministic")))]
    let mut prng = transcript.build_rng().finalize(&mut thread_rng());
    #[cfg(all(not(feature = "batch"), feature = "batch_deterministic"))]
    let mut prng = transcript.build_rng().finalize(&mut zero_rng());

    // Select a random 128-bit scalar for each signature.
    let zs: Vec<Scalar> = signatures
        .iter()
        .map(|_| Scalar::from(prng.gen::<u128>()))
        .collect();

    // Compute the basepoint coefficient, ∑ s[i]z[i] (mod l)
    let B_coefficient: Scalar = signatures
        .iter()
        .map(|sig| sig.s)
        .zip(zs.iter())
        .map(|(s, z)| z * s)
        .sum();

    // Multiply each H(R || A || M) by the random value
    let zhrams = hrams.iter().zip(zs.iter()).map(|(hram, z)| hram * z);

    let Rs = signatures.iter().map(|sig| sig.R.decompress());
    let As = public_keys.iter().map(|pk| Some(pk.1));
    let B = once(Some(constants::ED25519_BASEPOINT_POINT));

    // Compute (-∑ z[i]s[i] (mod l)) B + ∑ z[i]R[i] + ∑ (z[i]H(R||A||M)[i] (mod l)) A[i] = 0
    let id = EdwardsPoint::optional_multiscalar_mul(
        once(-B_coefficient).chain(zs.iter().cloned()).chain(zhrams),
        B.chain(Rs).chain(As),
    ).ok_or(InternalError::VerifyError)?;

    if id.is_identity() {
        Ok(())
    } else {
        Err(InternalError::VerifyError.into())
    }
}