Files
arrayref
arrayvec
bamboo_rs_core
blake2b_simd
block_buffer
byteorder
cfg_if
constant_time_eq
cpufeatures
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
curve25519_dalek
digest
doc_comment
ed25519
ed25519_dalek
either
generic_array
getrandom
hex
keccak
lazy_static
libc
lipmaa_link
memoffset
merlin
num_cpus
opaque_debug
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rayon
rayon_core
scopeguard
serde
serde_bytes
serde_derive
sha2
signature
snafu
snafu_derive
static_assertions
subtle
syn
synstructure
typenum
unicode_xid
varu64
yamf_hash
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
//! Keccak [sponge function](https://en.wikipedia.org/wiki/Sponge_function).
//!
//! If you are looking for SHA-3 hash functions take a look at [`sha3`][1] and
//! [`tiny-keccak`][2] crates.
//!
//! To disable loop unrolling (e.g. for constraint targets) use `no_unroll`
//! feature.
//!
//! ```
//! // Test vectors are from KeccakCodePackage
//! let mut data = [0u64; 25];
//!
//! keccak::f1600(&mut data);
//! assert_eq!(data, [
//!     0xF1258F7940E1DDE7, 0x84D5CCF933C0478A, 0xD598261EA65AA9EE, 0xBD1547306F80494D,
//!     0x8B284E056253D057, 0xFF97A42D7F8E6FD4, 0x90FEE5A0A44647C4, 0x8C5BDA0CD6192E76,
//!     0xAD30A6F71B19059C, 0x30935AB7D08FFC64, 0xEB5AA93F2317D635, 0xA9A6E6260D712103,
//!     0x81A57C16DBCF555F, 0x43B831CD0347C826, 0x01F22F1A11A5569F, 0x05E5635A21D9AE61,
//!     0x64BEFEF28CC970F2, 0x613670957BC46611, 0xB87C5A554FD00ECB, 0x8C3EE88A1CCF32C8,
//!     0x940C7922AE3A2614, 0x1841F924A2C509E4, 0x16F53526E70465C2, 0x75F644E97F30A13B,
//!     0xEAF1FF7B5CECA249,
//! ]);
//!
//! keccak::f1600(&mut data);
//! assert_eq!(data, [
//!     0x2D5C954DF96ECB3C, 0x6A332CD07057B56D, 0x093D8D1270D76B6C, 0x8A20D9B25569D094,
//!     0x4F9C4F99E5E7F156, 0xF957B9A2DA65FB38, 0x85773DAE1275AF0D, 0xFAF4F247C3D810F7,
//!     0x1F1B9EE6F79A8759, 0xE4FECC0FEE98B425, 0x68CE61B6B9CE68A1, 0xDEEA66C4BA8F974F,
//!     0x33C43D836EAFB1F5, 0xE00654042719DBD9, 0x7CF8A9F009831265, 0xFD5449A6BF174743,
//!     0x97DDAD33D8994B40, 0x48EAD5FC5D0BE774, 0xE3B8C8EE55B7B03C, 0x91A0226E649E42E9,
//!     0x900E3129E7BADD7B, 0x202A9EC5FAA3CCE8, 0x5B3402464E1C3DB6, 0x609F4E62A44C1059,
//!     0x20D06CD26A8FBF5C,
//! ]);
//! ```
//!
//! [1]: https://docs.rs/sha3
//! [2]: https://docs.rs/tiny-keccak
#![no_std]
#![allow(non_upper_case_globals)]

const PLEN: usize = 25;

const RHO: [u32; 24] = [
    1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18,
    39, 61, 20, 44,
];

const PI: [usize; 24] = [
    10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14,
    22, 9, 6, 1,
];

const RC: [u64; 24] = [
    0x0000000000000001,
    0x0000000000008082,
    0x800000000000808a,
    0x8000000080008000,
    0x000000000000808b,
    0x0000000080000001,
    0x8000000080008081,
    0x8000000000008009,
    0x000000000000008a,
    0x0000000000000088,
    0x0000000080008009,
    0x000000008000000a,
    0x000000008000808b,
    0x800000000000008b,
    0x8000000000008089,
    0x8000000000008003,
    0x8000000000008002,
    0x8000000000000080,
    0x000000000000800a,
    0x800000008000000a,
    0x8000000080008081,
    0x8000000000008080,
    0x0000000080000001,
    0x8000000080008008,
];

#[cfg(not(feature = "no_unroll"))]
macro_rules! unroll5 {
    ($var:ident, $body:block) => {
        { const $var: usize = 0; $body; }
        { const $var: usize = 1; $body; }
        { const $var: usize = 2; $body; }
        { const $var: usize = 3; $body; }
        { const $var: usize = 4; $body; }
    };
}

#[cfg(feature = "no_unroll")]
macro_rules! unroll5 {
    ($var:ident, $body:block) => {
        for $var in 0..5 $body
    }
}

#[cfg(not(feature = "no_unroll"))]
macro_rules! unroll24 {
    ($var: ident, $body: block) => {
        { const $var: usize = 0; $body; }
        { const $var: usize = 1; $body; }
        { const $var: usize = 2; $body; }
        { const $var: usize = 3; $body; }
        { const $var: usize = 4; $body; }
        { const $var: usize = 5; $body; }
        { const $var: usize = 6; $body; }
        { const $var: usize = 7; $body; }
        { const $var: usize = 8; $body; }
        { const $var: usize = 9; $body; }
        { const $var: usize = 10; $body; }
        { const $var: usize = 11; $body; }
        { const $var: usize = 12; $body; }
        { const $var: usize = 13; $body; }
        { const $var: usize = 14; $body; }
        { const $var: usize = 15; $body; }
        { const $var: usize = 16; $body; }
        { const $var: usize = 17; $body; }
        { const $var: usize = 18; $body; }
        { const $var: usize = 19; $body; }
        { const $var: usize = 20; $body; }
        { const $var: usize = 21; $body; }
        { const $var: usize = 22; $body; }
        { const $var: usize = 23; $body; }
    };
}

#[cfg(feature = "no_unroll")]
macro_rules! unroll24 {
    ($var:ident, $body:block) => {
        for $var in 0..24 $body
    }
}

#[allow(unused_assignments)]
/// Keccak-f[1600] sponge function
pub fn f1600(a: &mut [u64; PLEN]) {
    let mut arrays: [[u64; 5]; 24] = [[0; 5]; 24];

    // not unrolling this loop results in a much smaller function, plus
    // it positively influences performance due to the smaller load on I-cache
    for i in 0..24 {
        // Theta
        unroll5!(x, {
            // This looks useless but it gets way slower without it. I tried
            // using `mem::uninitialized` for the initialisation of `arrays` but
            // that also makes it slower, although not by as much as removing
            // this assignment. Optimisers are weird. Maybe a different version
            // of LLVM will react differently, so if you see this comment
            // in the future try deleting this assignment and using uninit
            // above and see how it affects the benchmarks.
            arrays[i][x] = 0;

            unroll5!(y, {
                arrays[i][x] ^= a[5 * y + x];
            });
        });

        unroll5!(x, {
            unroll5!(y, {
                let t1 = arrays[i][(x + 4) % 5];
                let t2 = arrays[i][(x + 1) % 5].rotate_left(1);
                a[5 * y + x] ^= t1 ^ t2;
            });
        });

        // Rho and pi
        let mut last = a[1];
        unroll24!(x, {
            arrays[i][0] = a[PI[x]];
            a[PI[x]] = last.rotate_left(RHO[x]);
            last = arrays[i][0];
        });

        // Chi
        unroll5!(y_step, {
            let y = 5 * y_step;

            unroll5!(x, {
                arrays[i][x] = a[y + x];
            });

            unroll5!(x, {
                let t1 = !arrays[i][(x + 1) % 5];
                let t2 = arrays[i][(x + 2) % 5];
                a[y + x] = arrays[i][x] ^ (t1 & t2);
            });
        });

        // Iota
        a[0] ^= RC[i];
    }
}