Files
arrayref
arrayvec
bamboo_rs_core
blake2b_simd
block_buffer
byteorder
cfg_if
constant_time_eq
cpufeatures
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
curve25519_dalek
digest
doc_comment
ed25519
ed25519_dalek
either
generic_array
getrandom
hex
keccak
lazy_static
libc
lipmaa_link
memoffset
merlin
num_cpus
opaque_debug
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rayon
rayon_core
scopeguard
serde
serde_bytes
serde_derive
sha2
signature
snafu
snafu_derive
static_assertions
subtle
syn
synstructure
typenum
unicode_xid
varu64
yamf_hash
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
use super::plumbing::*;
use super::*;
use std::cell::Cell;
use std::sync::atomic::{AtomicUsize, Ordering};

#[cfg(test)]
mod test;

// The key optimization for find_first is that a consumer can stop its search if
// some consumer to its left already found a match (and similarly for consumers
// to the right for find_last). To make this work, all consumers need some
// notion of their position in the data relative to other consumers, including
// unindexed consumers that have no built-in notion of position.
//
// To solve this, we assign each consumer a lower and upper bound for an
// imaginary "range" of data that it consumes. The initial consumer starts with
// the range 0..usize::max_value(). The split divides this range in half so that
// one resulting consumer has the range 0..(usize::max_value() / 2), and the
// other has (usize::max_value() / 2)..usize::max_value(). Every subsequent
// split divides the range in half again until it cannot be split anymore
// (i.e. its length is 1), in which case the split returns two consumers with
// the same range. In that case both consumers will continue to consume all
// their data regardless of whether a better match is found, but the reducer
// will still return the correct answer.

#[derive(Copy, Clone)]
enum MatchPosition {
    Leftmost,
    Rightmost,
}

/// Returns true if pos1 is a better match than pos2 according to MatchPosition
#[inline]
fn better_position(pos1: usize, pos2: usize, mp: MatchPosition) -> bool {
    match mp {
        MatchPosition::Leftmost => pos1 < pos2,
        MatchPosition::Rightmost => pos1 > pos2,
    }
}

pub(super) fn find_first<I, P>(pi: I, find_op: P) -> Option<I::Item>
where
    I: ParallelIterator,
    P: Fn(&I::Item) -> bool + Sync,
{
    let best_found = AtomicUsize::new(usize::max_value());
    let consumer = FindConsumer::new(&find_op, MatchPosition::Leftmost, &best_found);
    pi.drive_unindexed(consumer)
}

pub(super) fn find_last<I, P>(pi: I, find_op: P) -> Option<I::Item>
where
    I: ParallelIterator,
    P: Fn(&I::Item) -> bool + Sync,
{
    let best_found = AtomicUsize::new(0);
    let consumer = FindConsumer::new(&find_op, MatchPosition::Rightmost, &best_found);
    pi.drive_unindexed(consumer)
}

struct FindConsumer<'p, P> {
    find_op: &'p P,
    lower_bound: Cell<usize>,
    upper_bound: usize,
    match_position: MatchPosition,
    best_found: &'p AtomicUsize,
}

impl<'p, P> FindConsumer<'p, P> {
    fn new(find_op: &'p P, match_position: MatchPosition, best_found: &'p AtomicUsize) -> Self {
        FindConsumer {
            find_op,
            lower_bound: Cell::new(0),
            upper_bound: usize::max_value(),
            match_position,
            best_found,
        }
    }

    fn current_index(&self) -> usize {
        match self.match_position {
            MatchPosition::Leftmost => self.lower_bound.get(),
            MatchPosition::Rightmost => self.upper_bound,
        }
    }
}

impl<'p, T, P> Consumer<T> for FindConsumer<'p, P>
where
    T: Send,
    P: Fn(&T) -> bool + Sync,
{
    type Folder = FindFolder<'p, T, P>;
    type Reducer = FindReducer;
    type Result = Option<T>;

    fn split_at(self, _index: usize) -> (Self, Self, Self::Reducer) {
        let dir = self.match_position;
        (
            self.split_off_left(),
            self,
            FindReducer {
                match_position: dir,
            },
        )
    }

    fn into_folder(self) -> Self::Folder {
        FindFolder {
            find_op: self.find_op,
            boundary: self.current_index(),
            match_position: self.match_position,
            best_found: self.best_found,
            item: None,
        }
    }

    fn full(&self) -> bool {
        // can stop consuming if the best found index so far is *strictly*
        // better than anything this consumer will find
        better_position(
            self.best_found.load(Ordering::Relaxed),
            self.current_index(),
            self.match_position,
        )
    }
}

impl<'p, T, P> UnindexedConsumer<T> for FindConsumer<'p, P>
where
    T: Send,
    P: Fn(&T) -> bool + Sync,
{
    fn split_off_left(&self) -> Self {
        // Upper bound for one consumer will be lower bound for the other. This
        // overlap is okay, because only one of the bounds will be used for
        // comparing against best_found; the other is kept only to be able to
        // divide the range in half.
        //
        // When the resolution of usize has been exhausted (i.e. when
        // upper_bound = lower_bound), both results of this split will have the
        // same range. When that happens, we lose the ability to tell one
        // consumer to stop working when the other finds a better match, but the
        // reducer ensures that the best answer is still returned (see the test
        // above).
        let old_lower_bound = self.lower_bound.get();
        let median = old_lower_bound + ((self.upper_bound - old_lower_bound) / 2);
        self.lower_bound.set(median);

        FindConsumer {
            find_op: self.find_op,
            lower_bound: Cell::new(old_lower_bound),
            upper_bound: median,
            match_position: self.match_position,
            best_found: self.best_found,
        }
    }

    fn to_reducer(&self) -> Self::Reducer {
        FindReducer {
            match_position: self.match_position,
        }
    }
}

struct FindFolder<'p, T, P> {
    find_op: &'p P,
    boundary: usize,
    match_position: MatchPosition,
    best_found: &'p AtomicUsize,
    item: Option<T>,
}

impl<'p, P: 'p + Fn(&T) -> bool, T> Folder<T> for FindFolder<'p, T, P> {
    type Result = Option<T>;

    fn consume(mut self, item: T) -> Self {
        let found_best_in_range = match self.match_position {
            MatchPosition::Leftmost => self.item.is_some(),
            MatchPosition::Rightmost => false,
        };

        if !found_best_in_range && (self.find_op)(&item) {
            // Continuously try to set best_found until we succeed or we
            // discover a better match was already found.
            let mut current = self.best_found.load(Ordering::Relaxed);
            loop {
                if better_position(current, self.boundary, self.match_position) {
                    break;
                }
                match self.best_found.compare_exchange_weak(
                    current,
                    self.boundary,
                    Ordering::Relaxed,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => {
                        self.item = Some(item);
                        break;
                    }
                    Err(v) => current = v,
                }
            }
        }
        self
    }

    fn complete(self) -> Self::Result {
        self.item
    }

    fn full(&self) -> bool {
        let found_best_in_range = match self.match_position {
            MatchPosition::Leftmost => self.item.is_some(),
            MatchPosition::Rightmost => false,
        };

        found_best_in_range
            || better_position(
                self.best_found.load(Ordering::Relaxed),
                self.boundary,
                self.match_position,
            )
    }
}

struct FindReducer {
    match_position: MatchPosition,
}

impl<T> Reducer<Option<T>> for FindReducer {
    fn reduce(self, left: Option<T>, right: Option<T>) -> Option<T> {
        match self.match_position {
            MatchPosition::Leftmost => left.or(right),
            MatchPosition::Rightmost => right.or(left),
        }
    }
}